# `1`-Types ```agda module foundation.1-types where open import foundation-core.1-types public ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.subuniverses open import foundation.truncated-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.subtypes open import foundation-core.torsorial-type-families open import foundation-core.truncation-levels ``` </details> ### Being a 1-type is a property ```agda abstract is-prop-is-1-type : {l : Level} (A : UU l) → is-prop (is-1-type A) is-prop-is-1-type A = is-prop-is-trunc one-𝕋 A is-1-type-Prop : {l : Level} → UU l → Prop l is-1-type-Prop = is-trunc-Prop one-𝕋 ``` ### The type of all 1-types in a universe is a 2-type ```agda is-trunc-1-Type : {l : Level} → is-trunc two-𝕋 (1-Type l) is-trunc-1-Type = is-trunc-Truncated-Type one-𝕋 1-Type-Truncated-Type : (l : Level) → Truncated-Type (lsuc l) two-𝕋 1-Type-Truncated-Type l = Truncated-Type-Truncated-Type l one-𝕋 ``` ### Products of families of 1-types are 1-types ```agda abstract is-1-type-Π : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → ((x : A) → is-1-type (B x)) → is-1-type ((x : A) → B x) is-1-type-Π = is-trunc-Π one-𝕋 type-Π-1-Type' : {l1 l2 : Level} (A : UU l1) (B : A → 1-Type l2) → UU (l1 ⊔ l2) type-Π-1-Type' A B = (x : A) → type-1-Type (B x) is-1-type-type-Π-1-Type' : {l1 l2 : Level} (A : UU l1) (B : A → 1-Type l2) → is-1-type (type-Π-1-Type' A B) is-1-type-type-Π-1-Type' A B = is-1-type-Π (λ x → is-1-type-type-1-Type (B x)) Π-1-Type' : {l1 l2 : Level} (A : UU l1) (B : A → 1-Type l2) → 1-Type (l1 ⊔ l2) pr1 (Π-1-Type' A B) = type-Π-1-Type' A B pr2 (Π-1-Type' A B) = is-1-type-type-Π-1-Type' A B type-Π-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : type-1-Type A → 1-Type l2) → UU (l1 ⊔ l2) type-Π-1-Type A = type-Π-1-Type' (type-1-Type A) is-1-type-type-Π-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : type-1-Type A → 1-Type l2) → is-1-type (type-Π-1-Type A B) is-1-type-type-Π-1-Type A = is-1-type-type-Π-1-Type' (type-1-Type A) Π-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : type-1-Type A → 1-Type l2) → 1-Type (l1 ⊔ l2) Π-1-Type = Π-Truncated-Type one-𝕋 ``` ### The type of functions into a 1-type is a 1-type ```agda abstract is-1-type-function-type : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-1-type B → is-1-type (A → B) is-1-type-function-type = is-trunc-function-type one-𝕋 type-hom-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : 1-Type l2) → UU (l1 ⊔ l2) type-hom-1-Type A B = type-1-Type A → type-1-Type B is-1-type-type-hom-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : 1-Type l2) → is-1-type (type-hom-1-Type A B) is-1-type-type-hom-1-Type A B = is-1-type-function-type (is-1-type-type-1-Type B) hom-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : 1-Type l2) → 1-Type (l1 ⊔ l2) hom-1-Type = hom-Truncated-Type one-𝕋 ``` ### 1-Types are closed under dependent pair types ```agda abstract is-1-type-Σ : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-1-type A → ((x : A) → is-1-type (B x)) → is-1-type (Σ A B) is-1-type-Σ = is-trunc-Σ {k = one-𝕋} Σ-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : pr1 A → 1-Type l2) → 1-Type (l1 ⊔ l2) Σ-1-Type = Σ-Truncated-Type ``` ### 1-Types are closed under cartesian product types ```agda abstract is-1-type-product : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-1-type A → is-1-type B → is-1-type (A × B) is-1-type-product = is-trunc-product one-𝕋 product-1-Type : {l1 l2 : Level} (A : 1-Type l1) (B : 1-Type l2) → 1-Type (l1 ⊔ l2) product-1-Type A B = Σ-1-Type A (λ x → B) ``` ### Subtypes of 1-types are 1-types ```agda module _ {l1 l2 : Level} {A : UU l1} (P : subtype l2 A) where abstract is-1-type-type-subtype : is-1-type A → is-1-type (type-subtype P) is-1-type-type-subtype = is-trunc-type-subtype zero-𝕋 P ``` ```agda module _ {l : Level} (X : 1-Type l) where type-equiv-1-Type : {l2 : Level} (Y : 1-Type l2) → UU (l ⊔ l2) type-equiv-1-Type Y = type-1-Type X ≃ type-1-Type Y equiv-eq-1-Type : (Y : 1-Type l) → X = Y → type-equiv-1-Type Y equiv-eq-1-Type = equiv-eq-subuniverse is-1-type-Prop X abstract is-torsorial-equiv-1-Type : is-torsorial (λ (Y : 1-Type l) → type-equiv-1-Type Y) is-torsorial-equiv-1-Type = is-torsorial-equiv-subuniverse is-1-type-Prop X abstract is-equiv-equiv-eq-1-Type : (Y : 1-Type l) → is-equiv (equiv-eq-1-Type Y) is-equiv-equiv-eq-1-Type = is-equiv-equiv-eq-subuniverse is-1-type-Prop X extensionality-1-Type : (Y : 1-Type l) → (X = Y) ≃ type-equiv-1-Type Y pr1 (extensionality-1-Type Y) = equiv-eq-1-Type Y pr2 (extensionality-1-Type Y) = is-equiv-equiv-eq-1-Type Y eq-equiv-1-Type : (Y : 1-Type l) → type-equiv-1-Type Y → X = Y eq-equiv-1-Type Y = eq-equiv-subuniverse is-1-type-Prop ```