# The action on equivalences of functions out of subuniverses ```agda module foundation.action-on-equivalences-functions-out-of-subuniverses where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-induction open import foundation.subuniverses open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types ``` </details> ## Idea Consider a [subuniverse](foundation.subuniverses.md) `P` of `𝒰` and a map `f : P → B` from the subuniverse `P` into some type `B`. Then `f` has an **action on equivalences** ```text (X ≃ Y) → (f X = f Y) ``` which is uniquely determined by the [identification](foundation-core.identity-types.md) `action-equiv f id-equiv = refl`. The action on equivalences fits in a [commuting square](foundation.commuting-squares-of-maps.md) of maps ```text ap f (X = Y) ---------------> (f X = f Y) | | equiv-eq | | id ∨ ∨ (X ≃ Y) ---------------> (f X = f Y) action-equiv f ``` ## Definitions ```agda module _ {l1 l2 l3 : Level} (P : subuniverse l1 l2) {B : UU l3} (f : type-subuniverse P → B) where abstract unique-action-equiv-function-subuniverse : (X : type-subuniverse P) → is-contr ( Σ ( (Y : type-subuniverse P) → equiv-subuniverse P X Y → f X = f Y) ( λ h → h X id-equiv = refl)) unique-action-equiv-function-subuniverse X = is-contr-map-ev-id-equiv-subuniverse P X ( λ Y e → f X = f Y) ( refl) action-equiv-function-subuniverse : (X Y : type-subuniverse P) → equiv-subuniverse P X Y → f X = f Y action-equiv-function-subuniverse X Y = ap f ∘ eq-equiv-subuniverse P compute-action-equiv-function-subuniverse-id-equiv : (X : type-subuniverse P) → action-equiv-function-subuniverse X X id-equiv = refl compute-action-equiv-function-subuniverse-id-equiv X = ap² f (compute-eq-equiv-id-equiv-subuniverse P) ```