# Action on equivalences of functions ```agda module foundation.action-on-equivalences-functions where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-induction open import foundation.univalence open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types ``` </details> ## Idea Given a map between universes `f : 𝒰 → 𝒱`, then applying the [action on identifications](foundation.action-on-identifications-functions.md) to [identifications](foundation-core.identity-types.md) arising from the [univalence axiom](foundation.univalence.md) gives us the {{#concept "action on equivalences" Agda=action-equiv-function}} ```text action-equiv-function f : X ≃ Y → f X ≃ f Y. ``` Alternatively, one can apply [transport along identifications](foundation-core.transport-along-identifications.md) to get [transport along equivalences](foundation.transport-along-equivalences.md). However, by univalence such an action must also be unique, hence these two constructions coincide. ## Definition ```agda module _ {l1 l2 : Level} {B : UU l2} (f : UU l1 → B) where abstract unique-action-equiv-function : (X : UU l1) → is-contr ( Σ ((Y : UU l1) → X ≃ Y → f X = f Y) (λ h → h X id-equiv = refl)) unique-action-equiv-function X = is-contr-map-ev-id-equiv (λ Y e → f X = f Y) refl action-equiv-function : {X Y : UU l1} → X ≃ Y → f X = f Y action-equiv-function e = ap f (eq-equiv e) compute-action-equiv-function-id-equiv : (X : UU l1) → action-equiv-function id-equiv = refl compute-action-equiv-function-id-equiv X = ap² f (compute-eq-equiv-id-equiv X) ``` ## Properties ### The action on equivalences of a constant map is constant ```agda compute-action-equiv-function-const : {l1 l2 : Level} {B : UU l2} (b : B) {X Y : UU l1} (e : X ≃ Y) → (action-equiv-function (const (UU l1) b) e) = refl compute-action-equiv-function-const b e = ap-const b (eq-equiv e) ``` ### The action on equivalences of any map preserves composition of equivalences ```agda distributive-action-equiv-function-comp-equiv : {l1 l2 : Level} {B : UU l2} (f : UU l1 → B) {X Y Z : UU l1} → (e : X ≃ Y) (e' : Y ≃ Z) → action-equiv-function f (e' ∘e e) = action-equiv-function f e ∙ action-equiv-function f e' distributive-action-equiv-function-comp-equiv f e e' = ( ap² f (inv (compute-eq-equiv-comp-equiv e e'))) ∙ ( ap-concat f (eq-equiv e) (eq-equiv e')) ``` ### The action on equivalences of any map preserves inverses ```agda compute-action-equiv-function-inv-equiv : {l1 l2 : Level} {B : UU l2} (f : UU l1 → B) {X Y : UU l1} (e : X ≃ Y) → action-equiv-function f (inv-equiv e) = inv (action-equiv-function f e) compute-action-equiv-function-inv-equiv f e = ( ap² f (inv (commutativity-inv-eq-equiv e))) ∙ ( ap-inv f (eq-equiv e)) ```