# Constant span diagrams ```agda module foundation.constant-span-diagrams where ``` <details><summary>Imports</summary> ```agda open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.span-diagrams open import foundation.spans open import foundation.universe-levels open import foundation-core.equivalences ``` </details> ## Idea The {{#concept "constant span diagram" Agda=constant-span-diagram}} at a type `X` is the [span diagram](foundation.span-diagrams.md) ```text id id X <----- X -----> X. ``` Alternatively, a span diagram ```text f g A <----- S -----> B ``` is said to be constant if both `f` and `g` are [equivalences](foundation-core.equivalences.md). ## Definitions ### Constant span diagrams at a type ```agda module _ {l1 : Level} where constant-span-diagram : UU l1 → span-diagram l1 l1 l1 pr1 (constant-span-diagram X) = X pr1 (pr2 (constant-span-diagram X)) = X pr2 (pr2 (constant-span-diagram X)) = id-span ``` ### The predicate of being a constant span diagram ```agda module _ {l1 l2 l3 : Level} (𝒮 : span-diagram l1 l2 l3) where is-constant-span-diagram : UU (l1 ⊔ l2 ⊔ l3) is-constant-span-diagram = is-equiv (left-map-span-diagram 𝒮) × is-equiv (right-map-span-diagram 𝒮) ```