# Constant type families ```agda module foundation.constant-type-families where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-dependent-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation-core.commuting-squares-of-identifications open import foundation-core.dependent-identifications open import foundation-core.equivalences ``` </details> ## Idea A type family `B` over `A` is said to be **constant**, if there is a type `X` equipped with a family of equivalences `X ≃ B a` indexed by `a : A`. The **standard constant type family** over `A` with fiber `B` is the constant map `const A 𝒰 B : A → 𝒰`, where `𝒰` is a universe containing `B`. ## Definitions ### The predicate of being a constant type family ```agda module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where is-constant-type-family : UU (l1 ⊔ lsuc l2) is-constant-type-family = Σ (UU l2) (λ X → (a : A) → X ≃ B a) module _ (H : is-constant-type-family) where type-is-constant-type-family : UU l2 type-is-constant-type-family = pr1 H equiv-is-constant-type-family : (a : A) → type-is-constant-type-family ≃ B a equiv-is-constant-type-family = pr2 H ``` ### The (standard) constant type family ```agda constant-type-family : {l1 l2 : Level} (A : UU l1) (B : UU l2) → A → UU l2 constant-type-family A B a = B is-constant-type-family-constant-type-family : {l1 l2 : Level} (A : UU l1) (B : UU l2) → is-constant-type-family (constant-type-family A B) pr1 (is-constant-type-family-constant-type-family A B) = B pr2 (is-constant-type-family-constant-type-family A B) a = id-equiv ``` ## Properties ### Transport in a standard constant type family ```agda tr-constant-type-family : {l1 l2 : Level} {A : UU l1} {B : UU l2} {x y : A} (p : x = y) (b : B) → dependent-identification (constant-type-family A B) p b b tr-constant-type-family refl b = refl ``` ### Computing dependent identifications in constant type families ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where map-compute-dependent-identification-constant-type-family : {x y : A} (p : x = y) {x' y' : B} → x' = y' → dependent-identification (λ _ → B) p x' y' map-compute-dependent-identification-constant-type-family p {x'} q = tr-constant-type-family p x' ∙ q compute-dependent-identification-constant-type-family : {x y : A} (p : x = y) {x' y' : B} → (x' = y') ≃ dependent-identification (λ _ → B) p x' y' compute-dependent-identification-constant-type-family p {x'} {y'} = equiv-concat (tr-constant-type-family p x') y' ``` ### Dependent action on paths of sections of standard constant type families ```agda apd-constant-type-family : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) {x y : A} (p : x = y) → apd f p = tr-constant-type-family p (f x) ∙ ap f p apd-constant-type-family f refl = refl ``` ### Naturality of transport in constant type families For every equality `p : x = x'` in `A` and `q : y = y'` in `B` we have a commuting square of identifications ```text ap (tr (λ _ → B) p) q tr (λ _ → B) p y ------> tr (λ _ → B) p y' | | tr-constant-family p y | | tr-constant-family p y' ∨ ∨ y ------> y'. q ``` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where naturality-tr-constant-type-family : {x x' : A} (p : x = x') {y y' : B} (q : y = y') → coherence-square-identifications ( ap (tr (λ _ → B) p) q) ( tr-constant-type-family p y) ( tr-constant-type-family p y') ( q) naturality-tr-constant-type-family p refl = right-unit naturality-inv-tr-constant-type-family : {x x' : A} (p : x = x') {y y' : B} (q : y = y') → coherence-square-identifications ( q) ( inv (tr-constant-type-family p y)) ( inv (tr-constant-type-family p y')) ( ap (tr (λ _ → B) p) q) naturality-inv-tr-constant-type-family p refl = right-unit ```