# Morphisms in the coslice category of types ```agda module foundation.coslice where ``` <details><summary>Imports</summary> ```agda open import foundation.commuting-triangles-of-homotopies open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.structure-identity-principle open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types ``` </details> ## Idea Given a span of maps ```text X / \ f / \ g ∨ ∨ A B, ``` we define a morphism between the maps in the coslice category of types to be a map `h : A → B` together with a coherence triangle `(h ∘ f) ~ g`: ```text X / \ f / \ g ∨ ∨ A ----> B. h ``` ## Definition ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3} (f : X → A) (g : X → B) where hom-coslice = Σ (A → B) (λ h → h ∘ f ~ g) module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {f : X → A} {g : X → B} where map-hom-coslice : hom-coslice f g → A → B map-hom-coslice = pr1 triangle-hom-coslice : (h : hom-coslice f g) → map-hom-coslice h ∘ f ~ g triangle-hom-coslice = pr2 ``` ## Properties ### Characterizing the identity type of coslice morphisms ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3} {f : X → A} {g : X → B} where coherence-htpy-hom-coslice : (h k : hom-coslice f g) → map-hom-coslice h ~ map-hom-coslice k → UU (l1 ⊔ l3) coherence-htpy-hom-coslice h k H = coherence-triangle-homotopies ( triangle-hom-coslice h) ( triangle-hom-coslice k) ( H ·r f) htpy-hom-coslice : (h k : hom-coslice f g) → UU (l1 ⊔ l2 ⊔ l3) htpy-hom-coslice h k = Σ ( map-hom-coslice h ~ map-hom-coslice k) ( coherence-htpy-hom-coslice h k) extensionality-hom-coslice : (h k : hom-coslice f g) → (h = k) ≃ htpy-hom-coslice h k extensionality-hom-coslice (h , H) = extensionality-Σ ( λ {h' : A → B} (H' : h' ∘ f ~ g) (K : h ~ h') → H ~ ((K ·r f) ∙h H')) ( refl-htpy) ( refl-htpy) ( λ h' → equiv-funext) ( λ H' → equiv-funext) eq-htpy-hom-coslice : ( h k : hom-coslice f g) ( H : map-hom-coslice h ~ map-hom-coslice k) ( K : coherence-htpy-hom-coslice h k H) → h = k eq-htpy-hom-coslice h k H K = map-inv-equiv (extensionality-hom-coslice h k) (H , K) ```