# Descent for coproduct types ```agda {-# OPTIONS --lossy-unification #-} module foundation.descent-coproduct-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-fibers-of-maps open import foundation.universe-levels open import foundation.whiskering-identifications-concatenation open import foundation-core.coproduct-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.families-of-equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.pullbacks ``` </details> ## Theorem ```agda module _ {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A' → A) (g : B' → B) (h : X' → X) (αA : A → X) (αB : B → X) (αA' : A' → X') (αB' : B' → X') (HA : αA ∘ f ~ h ∘ αA') (HB : αB ∘ g ~ h ∘ αB') where triangle-descent-square-fiber-map-coproduct-inl-fiber : (x : A) → ( map-fiber-vertical-map-cone αA h (f , αA' , HA) x) ~ ( map-fiber-vertical-map-cone (ind-coproduct _ αA αB) h ( map-coproduct f g , ind-coproduct _ αA' αB' , ind-coproduct _ HA HB) ( inl x)) ∘ ( fiber-map-coproduct-inl-fiber f g x) triangle-descent-square-fiber-map-coproduct-inl-fiber x (a' , p) = eq-pair-eq-fiber ( left-whisker-concat ( inv (HA a')) ( ap-comp (ind-coproduct _ αA αB) inl p)) triangle-descent-square-fiber-map-coproduct-inr-fiber : (y : B) → ( map-fiber-vertical-map-cone αB h (g , αB' , HB) y) ~ ( map-fiber-vertical-map-cone (ind-coproduct _ αA αB) h ( map-coproduct f g , ind-coproduct _ αA' αB' , ind-coproduct _ HA HB) ( inr y)) ∘ ( fiber-map-coproduct-inr-fiber f g y) triangle-descent-square-fiber-map-coproduct-inr-fiber y (b' , p) = eq-pair-eq-fiber ( left-whisker-concat ( inv (HB b')) ( ap-comp (ind-coproduct _ αA αB) inr p)) module _ {l1 l2 l3 l1' l2' l3' : Level} {A : UU l1} {B : UU l2} {X : UU l3} {A' : UU l1'} {B' : UU l2'} {X' : UU l3'} (f : A → X) (g : B → X) (i : X' → X) where cone-descent-coproduct : (cone-A' : cone f i A') (cone-B' : cone g i B') → cone (ind-coproduct _ f g) i (A' + B') pr1 (cone-descent-coproduct (h , f' , H) (k , g' , K)) = map-coproduct h k pr1 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inl a') = f' a' pr1 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inr b') = g' b' pr2 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inl a') = H a' pr2 (pr2 (cone-descent-coproduct (h , f' , H) (k , g' , K))) (inr b') = K b' abstract descent-coproduct : (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback f i cone-A' → is-pullback g i cone-B' → is-pullback ( ind-coproduct _ f g) ( i) ( cone-descent-coproduct cone-A' cone-B') descent-coproduct (h , f' , H) (k , g' , K) is-pb-cone-A' is-pb-cone-B' = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone ( ind-coproduct _ f g) ( i) ( cone-descent-coproduct (h , f' , H) (k , g' , K)) ( α) where α : is-fiberwise-equiv ( map-fiber-vertical-map-cone ( ind-coproduct (λ _ → X) f g) ( i) ( cone-descent-coproduct (h , f' , H) (k , g' , K))) α (inl x) = is-equiv-right-map-triangle ( map-fiber-vertical-map-cone f i (h , f' , H) x) ( map-fiber-vertical-map-cone (ind-coproduct _ f g) i ( cone-descent-coproduct (h , f' , H) (k , g' , K)) ( inl x)) ( fiber-map-coproduct-inl-fiber h k x) ( triangle-descent-square-fiber-map-coproduct-inl-fiber h k i f g f' g' H K x) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback f i ( h , f' , H) is-pb-cone-A' x) ( is-equiv-fiber-map-coproduct-inl-fiber h k x) α (inr y) = is-equiv-right-map-triangle ( map-fiber-vertical-map-cone g i (k , g' , K) y) ( map-fiber-vertical-map-cone ( ind-coproduct _ f g) i ( cone-descent-coproduct (h , f' , H) (k , g' , K)) ( inr y)) ( fiber-map-coproduct-inr-fiber h k y) ( triangle-descent-square-fiber-map-coproduct-inr-fiber h k i f g f' g' H K y) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback g i ( k , g' , K) is-pb-cone-B' y) ( is-equiv-fiber-map-coproduct-inr-fiber h k y) abstract descent-coproduct-inl : (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback ( ind-coproduct _ f g) ( i) ( cone-descent-coproduct cone-A' cone-B') → is-pullback f i cone-A' descent-coproduct-inl (h , f' , H) (k , g' , K) is-pb-dsq = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone f i ( h , f' , H) ( λ a → is-equiv-left-map-triangle ( map-fiber-vertical-map-cone f i (h , f' , H) a) ( map-fiber-vertical-map-cone (ind-coproduct _ f g) i ( cone-descent-coproduct (h , f' , H) (k , g' , K)) ( inl a)) ( fiber-map-coproduct-inl-fiber h k a) ( triangle-descent-square-fiber-map-coproduct-inl-fiber h k i f g f' g' H K a) ( is-equiv-fiber-map-coproduct-inl-fiber h k a) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback ( ind-coproduct _ f g) ( i) ( cone-descent-coproduct ( h , f' , H) (k , g' , K)) ( is-pb-dsq) ( inl a))) abstract descent-coproduct-inr : (cone-A' : cone f i A') (cone-B' : cone g i B') → is-pullback ( ind-coproduct _ f g) ( i) ( cone-descent-coproduct cone-A' cone-B') → is-pullback g i cone-B' descent-coproduct-inr (h , f' , H) (k , g' , K) is-pb-dsq = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone g i ( k , g' , K) ( λ b → is-equiv-left-map-triangle ( map-fiber-vertical-map-cone g i (k , g' , K) b) ( map-fiber-vertical-map-cone (ind-coproduct _ f g) i ( cone-descent-coproduct (h , f' , H) (k , g' , K)) ( inr b)) ( fiber-map-coproduct-inr-fiber h k b) ( triangle-descent-square-fiber-map-coproduct-inr-fiber h k i f g f' g' H K b) ( is-equiv-fiber-map-coproduct-inr-fiber h k b) ( is-fiberwise-equiv-map-fiber-vertical-map-cone-is-pullback ( ind-coproduct _ f g) ( i) ( cone-descent-coproduct (h , f' , H) (k , g' , K)) ( is-pb-dsq) ( inr b))) ```