# The fundamental theorem of identity types ```agda module foundation.fundamental-theorem-of-identity-types where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.families-of-equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.retractions open import foundation-core.retracts-of-types open import foundation-core.sections open import foundation-core.torsorial-type-families ``` </details> ## Idea The _fundamental theorem of identity types_ provides a way to characterize [identity types](foundation-core.identity-types.md). It uses the fact that a family of maps `f : (x : A) → a = x → B x` is a family of [equivalences](foundation-core.equivalences.md) if and only if it induces an equivalence `Σ A (Id a) → Σ A B` on [total spaces](foundation.dependent-pair-types.md). Note that the total space `Σ A (Id a)` is [contractible](foundation-core.contractible-types.md). Therefore, any map `Σ A (Id a) → Σ A B` is an equivalence if and only if `Σ A B` is contractible. Type families `B` of which the total space `Σ A B` is contractible are also called [torsorial](foundation-core.torsorial-type-families.md). The statement of the fundamental theorem of identity types is therefore: **Fundamental theorem of identity types.** Consider a type family `B` over a type `A`, and consider an element `a : A`. Then the following are [logically equivalent](foundation.logical-equivalences.md): 1. Any family of maps `f : (x : A) → a = x → B x` is a family of equivalences. 2. The type family `B` is torsorial. ## Theorem ### The fundamental theorem of identity types ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {a : A} where abstract fundamental-theorem-id : is-torsorial B → (f : (x : A) → a = x → B x) → is-fiberwise-equiv f fundamental-theorem-id is-contr-AB f = is-fiberwise-equiv-is-equiv-tot ( is-equiv-is-contr (tot f) (is-torsorial-Id a) is-contr-AB) abstract fundamental-theorem-id' : (f : (x : A) → a = x → B x) → is-fiberwise-equiv f → is-torsorial B fundamental-theorem-id' f is-fiberwise-equiv-f = is-contr-is-equiv' ( Σ A (Id a)) ( tot f) ( is-equiv-tot-is-fiberwise-equiv is-fiberwise-equiv-f) ( is-torsorial-Id a) ``` ## Corollaries ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) (b : B a) where abstract fundamental-theorem-id-J : is-torsorial B → is-fiberwise-equiv (ind-Id a (λ x p → B x) b) fundamental-theorem-id-J is-contr-AB = fundamental-theorem-id is-contr-AB (ind-Id a (λ x p → B x) b) abstract fundamental-theorem-id-J' : is-fiberwise-equiv (ind-Id a (λ x p → B x) b) → is-torsorial B fundamental-theorem-id-J' H = is-contr-is-equiv' ( Σ A (Id a)) ( tot (ind-Id a (λ x p → B x) b)) ( is-equiv-tot-is-fiberwise-equiv H) ( is-torsorial-Id a) ``` ### Retracts of the identity type are equivalent to the identity type ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) where abstract fundamental-theorem-id-retraction : (i : (x : A) → B x → a = x) → ((x : A) → retraction (i x)) → is-fiberwise-equiv i fundamental-theorem-id-retraction i R = is-fiberwise-equiv-is-equiv-tot ( is-equiv-is-contr (tot i) ( is-contr-retract-of ( Σ _ (λ y → a = y)) ( ( tot i) , ( tot (λ x → pr1 (R x))) , ( ( inv-htpy (preserves-comp-tot i (pr1 ∘ R))) ∙h ( tot-htpy (pr2 ∘ R)) ∙h ( tot-id B))) ( is-torsorial-Id a)) ( is-torsorial-Id a)) fundamental-theorem-id-retract : (R : (x : A) → (B x) retract-of (a = x)) → is-fiberwise-equiv (inclusion-retract ∘ R) fundamental-theorem-id-retract R = fundamental-theorem-id-retraction ( inclusion-retract ∘ R) ( retraction-retract ∘ R) ``` ### The fundamental theorem of identity types, using sections ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) where abstract fundamental-theorem-id-section : (f : (x : A) → a = x → B x) → ((x : A) → section (f x)) → is-fiberwise-equiv f fundamental-theorem-id-section f section-f x = is-equiv-is-equiv-section ( f x) ( section-f x) ( fundamental-theorem-id-retraction ( a) ( λ x → map-section (f x) (section-f x)) ( λ x → (f x , is-section-map-section (f x) (section-f x))) ( x)) ``` ## See also - An extension of the fundamental theorem of identity types is formalized in [`foundation.regensburg-extension-fundamental-theorem-of-identity-types`](foundation.regensburg-extension-fundamental-theorem-of-identity-types.md).