# Homotopy induction ```agda module foundation.homotopy-induction where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.identity-systems open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-identity-systems open import foundation.universe-levels open import foundation-core.commuting-triangles-of-maps open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.torsorial-type-families ``` </details> ## Idea The principle of **homotopy induction** asserts that homotopies form an [identity system](foundation.identity-systems.md) on dependent function types. ## Statement ### Evaluation at the reflexivity homotopy ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {f : (x : A) → B x} where ev-refl-htpy : (C : (g : (x : A) → B x) → f ~ g → UU l3) → ((g : (x : A) → B x) (H : f ~ g) → C g H) → C f refl-htpy ev-refl-htpy C φ = φ f refl-htpy triangle-ev-refl-htpy : (C : (Σ ((x : A) → B x) (f ~_)) → UU l3) → coherence-triangle-maps ( ev-point (f , refl-htpy)) ( ev-refl-htpy (λ g H → C (g , H))) ( ev-pair) triangle-ev-refl-htpy C F = refl ``` ### The homotopy induction principle ```agda induction-principle-homotopies : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) → UUω induction-principle-homotopies f = is-identity-system (f ~_) f (refl-htpy) ``` ## Propositions ### The total space of homotopies is contractible Type families of which the [total space](foundation.dependent-pair-types.md) is [contractible](foundation-core.contractible-types.md) are also called [torsorial](foundation-core.torsorial-type-families.md). This terminology originates from higher group theory, where a [higher group action](higher-group-theory.higher-group-actions.md) is torsorial if its type of [orbits](higher-group-theory.orbits-higher-group-actions.md), i.e., its total space, is contractible. Our claim that the total space of all homotopies from a function `f` is contractible can therefore be stated more succinctly as the claim that the family of homotopies from `f` is torsorial. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) where abstract is-torsorial-htpy : is-torsorial (λ g → f ~ g) is-torsorial-htpy = is-contr-equiv' ( Σ ((x : A) → B x) (λ g → f = g)) ( equiv-tot (λ g → equiv-funext)) ( is-torsorial-Id f) abstract is-torsorial-htpy' : is-torsorial (λ g → g ~ f) is-torsorial-htpy' = is-contr-equiv' ( Σ ((x : A) → B x) (λ g → g = f)) ( equiv-tot (λ g → equiv-funext)) ( is-torsorial-Id' f) ``` ### Homotopy induction is equivalent to function extensionality ```agda abstract induction-principle-homotopies-based-function-extensionality : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) → based-function-extensionality f → induction-principle-homotopies f induction-principle-homotopies-based-function-extensionality f funext-f = is-identity-system-is-torsorial f ( refl-htpy) ( is-torsorial-htpy f) abstract based-function-extensionality-induction-principle-homotopies : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (f : (x : A) → B x) → induction-principle-homotopies f → based-function-extensionality f based-function-extensionality-induction-principle-homotopies f ind-htpy-f = fundamental-theorem-id-is-identity-system f ( refl-htpy) ( ind-htpy-f) ( λ _ → htpy-eq) ``` ### Homotopy induction ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where abstract induction-principle-htpy : (f : (x : A) → B x) → induction-principle-homotopies f induction-principle-htpy f = induction-principle-homotopies-based-function-extensionality f (funext f) ind-htpy : {l3 : Level} (f : (x : A) → B x) (C : (g : (x : A) → B x) → f ~ g → UU l3) → C f refl-htpy → {g : (x : A) → B x} (H : f ~ g) → C g H ind-htpy f C t {g} = pr1 (induction-principle-htpy f C) t g compute-ind-htpy : {l3 : Level} (f : (x : A) → B x) (C : (g : (x : A) → B x) → f ~ g → UU l3) → (c : C f refl-htpy) → ind-htpy f C c refl-htpy = c compute-ind-htpy f C = pr2 (induction-principle-htpy f C) ``` ### The evaluation map `ev-refl-htpy` is an equivalence ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {f : (x : A) → B x} (C : (g : (x : A) → B x) → f ~ g → UU l3) where is-equiv-ev-refl-htpy : is-equiv (ev-refl-htpy C) is-equiv-ev-refl-htpy = dependent-universal-property-identity-system-is-torsorial ( refl-htpy) ( is-torsorial-htpy f) ( C) is-contr-map-ev-refl-htpy : is-contr-map (ev-refl-htpy C) is-contr-map-ev-refl-htpy = is-contr-map-is-equiv is-equiv-ev-refl-htpy equiv-ev-refl-htpy : ((g : (x : A) → B x) (H : f ~ g) → C g H) ≃ C f refl-htpy equiv-ev-refl-htpy = (ev-refl-htpy C , is-equiv-ev-refl-htpy) ``` ## See also - [Homotopies](foundation.homotopies.md). - [Function extensionality](foundation.function-extensionality.md).