# Negated equality ```agda module foundation.negated-equality where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.negation open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.identity-types open import foundation-core.propositions ``` </details> ## Idea Two elements `x` and `y` are **not equal** whenever `¬ (x = y)` is inhabited. ## Definition ```agda nonequal : {l : Level} {A : UU l} → A → A → UU l nonequal x y = ¬ (x = y) infix 6 _≠_ _≠_ = nonequal ``` ## Properties ### Nonequality is a property ```agda module _ {l : Level} {A : UU l} where is-prop-nonequal : {x y : A} → is-prop (x ≠ y) is-prop-nonequal = is-prop-neg nonequal-Prop : (x y : A) → Prop l pr1 (nonequal-Prop x y) = x ≠ y pr2 (nonequal-Prop x y) = is-prop-nonequal ``` ### Nonequality is antireflexive ```agda module _ {l : Level} {A : UU l} where is-antireflexive-nonequal : (a : A) → ¬ (a ≠ a) is-antireflexive-nonequal a d = d refl is-consistent-nonequal : (a b : A) → (a = b) → ¬ (a ≠ b) is-consistent-nonequal a b p d = d p ``` ### Nonequality is symmetric ```agda module _ {l : Level} {A : UU l} where is-symmetric-nonequal : is-symmetric (nonequal {A = A}) is-symmetric-nonequal a b = map-neg inv ``` ### If two functions are nonequal at a point, they are nonequal as functions ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where nonequal-Π : (f g : (x : A) → B x) (a : A) → f a ≠ g a → f ≠ g nonequal-Π f g a = map-neg (λ h → htpy-eq h a) ``` ### If either component of two pairs are nonequal, the pairs are nonequal ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where nonequal-pr1 : (u v : Σ A B) → pr1 u ≠ pr1 v → u ≠ v nonequal-pr1 u v = map-neg (ap pr1) module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where nonequal-product-pr2 : (u v : A × B) → pr2 u ≠ pr2 v → u ≠ v nonequal-product-pr2 u v = map-neg (ap pr2) ``` ### If there is a reflexive relation that does not relate `a` and `b`, then they are nonequal ```agda module _ {l1 l2 : Level} {A : UU l1} where nonequal-reflexive-relation : (R : Relation l2 A) → is-reflexive R → (a b : A) → ¬ (R a b) → a ≠ b nonequal-reflexive-relation R is-refl-R a .a r refl = r (is-refl-R a) ``` ### If there is any family on `A` that is inhabited over one term but not the other, then they are nonequal ```agda module _ {l1 l2 : Level} {A : UU l1} where nonequal-leibniz : (B : A → UU l2) → (a b : A) → B a → ¬ (B b) → a ≠ b nonequal-leibniz B a .a a' b' refl = b' a' nonequal-leibniz' : (B : A → UU l2) → (a b : A) → ¬ (B a) → B b → a ≠ b nonequal-leibniz' B a .a a' b' refl = a' b' ``` ## See also - [Apartness relations](foundation.apartness-relations.md)