# Path-split maps ```agda module foundation.path-split-maps where open import foundation-core.path-split-maps public ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.iterated-dependent-product-types open import foundation.logical-equivalences open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.propositions ``` </details> ## Properties ### Being path-split is a property ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-path-split : (f : A → B) → is-prop (is-path-split f) is-prop-is-path-split f = is-prop-is-proof-irrelevant ( λ is-path-split-f → ( is-contr-product ( is-contr-section-is-equiv ( is-equiv-is-path-split f is-path-split-f)) ( is-contr-iterated-Π 2 ( λ x y → is-contr-section-is-equiv ( is-emb-is-equiv ( is-equiv-is-path-split f is-path-split-f) x y))))) abstract is-equiv-is-path-split-is-equiv : (f : A → B) → is-equiv (is-path-split-is-equiv f) is-equiv-is-path-split-is-equiv f = is-equiv-has-converse-is-prop ( is-property-is-equiv f) ( is-prop-is-path-split f) ( is-equiv-is-path-split f) equiv-is-path-split-is-equiv : (f : A → B) → is-equiv f ≃ is-path-split f equiv-is-path-split-is-equiv f = pair (is-path-split-is-equiv f) (is-equiv-is-path-split-is-equiv f) abstract is-equiv-is-equiv-is-path-split : (f : A → B) → is-equiv (is-equiv-is-path-split f) is-equiv-is-equiv-is-path-split f = is-equiv-has-converse-is-prop ( is-prop-is-path-split f) ( is-property-is-equiv f) ( is-path-split-is-equiv f) equiv-is-equiv-is-path-split : (f : A → B) → is-path-split f ≃ is-equiv f equiv-is-equiv-is-path-split f = ( is-equiv-is-path-split f , is-equiv-is-equiv-is-path-split f) ``` ## See also - For the notion of biinvertible maps see [`foundation.equivalences`](foundation.equivalences.md). - For the notion of coherently invertible maps, also known as half-adjoint equivalences, see [`foundation.coherently-invertible-maps`](foundation.coherently-invertible-maps.md). - For the notion of maps with contractible fibers see [`foundation.contractible-maps`](foundation.contractible-maps.md). ## References {{#bibliography}} {{#reference UF13}} {{#reference Shu14UniversalProperties}}