# Singleton induction

```agda
module foundation.singleton-induction where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.contractible-types
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.sections
open import foundation-core.transport-along-identifications
```

</details>

## Idea

**Singleton induction** on a type `A` equipped with a point `a : A` is a
principle analogous to the induction principle of the
[unit type](foundation.unit-type.md). A type satisfies singleton induction if
and only if it is [contractible](foundation-core.contractible-types.md).

Singleton induction states that given a type family `B` over `A`, to construct a
section of `B` it suffices to construct an element in `B a`.

## Definition

### Singleton induction

```agda
is-singleton :
  (l1 : Level) {l2 : Level} (A : UU l2)  A  UU (lsuc l1  l2)
is-singleton l A a = (B : A  UU l)  section (ev-point a {B})

ind-is-singleton :
  {l1 l2 : Level} {A : UU l1} (a : A) 
  ({l : Level}  is-singleton l A a)  (B : A  UU l2) 
  B a  (x : A)  B x
ind-is-singleton a is-sing-A B = pr1 (is-sing-A B)

compute-ind-is-singleton :
  {l1 l2 : Level} {A : UU l1} (a : A) (H : {l : Level}  is-singleton l A a) 
  (B : A  UU l2)  (ev-point a {B}  ind-is-singleton a H B) ~ id
compute-ind-is-singleton a H B = pr2 (H B)
```

## Properties

### Contractible types satisfy singleton induction

```agda
ind-singleton :
  {l1 l2 : Level} {A : UU l1} (a : A) (is-contr-A : is-contr A)
  (B : A  UU l2)  B a  (x : A)  B x
ind-singleton a is-contr-A B b x =
  tr B (inv (contraction is-contr-A a)  contraction is-contr-A x) b

compute-ind-singleton :
  {l1 l2 : Level} {A : UU l1}
  (a : A) (is-contr-A : is-contr A) (B : A  UU l2) 
  (ev-point a {B}  ind-singleton a is-contr-A B) ~ id
compute-ind-singleton a is-contr-A B b =
  ap  p  tr B p b) (left-inv (contraction is-contr-A a))
```

### A type satisfies singleton induction if and only if it is contractible

```agda
is-singleton-is-contr :
  {l1 l2 : Level} {A : UU l1} (a : A)  is-contr A  is-singleton l2 A a
pr1 (is-singleton-is-contr a is-contr-A B) =
  ind-singleton a is-contr-A B
pr2 (is-singleton-is-contr a is-contr-A B) =
  compute-ind-singleton a is-contr-A B

abstract
  is-contr-ind-singleton :
    {l1 : Level} (A : UU l1) (a : A) 
    ({l2 : Level} (B : A  UU l2)  B a  (x : A)  B x)  is-contr A
  pr1 (is-contr-ind-singleton A a S) = a
  pr2 (is-contr-ind-singleton A a S) = S  x  a  x) refl

abstract
  is-contr-is-singleton :
    {l1 : Level} (A : UU l1) (a : A) 
    ({l2 : Level}  is-singleton l2 A a)  is-contr A
  is-contr-is-singleton A a S = is-contr-ind-singleton A a (pr1  S)
```

## Examples

### The total space of an identity type satisfies singleton induction

```agda
abstract
  is-singleton-total-path :
    {l1 l2 : Level} (A : UU l1) (a : A) 
    is-singleton l2 (Σ A  x  a  x)) (a , refl)
  pr1 (is-singleton-total-path A a B) = ind-Σ  ind-Id a _
  pr2 (is-singleton-total-path A a B) = refl-htpy
```

## See also

- The equivalent principle of
  [subsingleton induction](foundation.subsingleton-induction.md)
- [Singleton subsets](foundation.singleton-subtypes.md)