# Whiskering homotopies with respect to concatenation ```agda module foundation.whiskering-homotopies-concatenation where open import foundation-core.whiskering-homotopies-concatenation public ``` <details><summary>Imports</summary> ```agda open import foundation.universe-levels open import foundation.whiskering-identifications-concatenation open import foundation-core.equivalences open import foundation-core.functoriality-dependent-function-types open import foundation-core.homotopies ``` </details> ## Idea Consider a homotopy `H : f ~ g` and a homotopy `K : I ~ J` between two homotopies `I J : g ~ f`. The {{#concept "left whiskering" Disambiguation="homotopies with respect to concatenation" Agda=left-whisker-concat-htpy}} of `H` and `K` is a homotopy `H ∙h I ~ H ∙h J`. In other words, left whiskering of homotopies with respect to concatenation is a [whiskering operation](foundation.whiskering-operations.md) ```text (H : f ~ g) {I J : g ~ h} → I ~ J → H ∙h I ~ H ∙h K. ``` Similarly, we introduce {{#concept "right whiskering" Disambiguation="homotopies with respect to concatenation" Agda=right-whisker-concat-htpy}} to be an operation ```text {H I : f ~ g} → H ~ I → (J : g ~ h) → H ∙h J ~ I ∙h J. ``` ## Properties ### Left whiskering of homotopies with respect to concatenation is an equivalence ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where is-equiv-left-whisker-concat-htpy : {f g h : (x : A) → B x} (H : f ~ g) {I J : g ~ h} → is-equiv (left-whisker-concat-htpy H {I} {J}) is-equiv-left-whisker-concat-htpy H = is-equiv-map-Π-is-fiberwise-equiv ( λ x → is-equiv-left-whisker-concat (H x)) ``` ### Right whiskering of homotopies with respect to concatenation is an equivalence ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where is-equiv-right-whisker-concat-htpy : {f g h : (x : A) → B x} {H I : f ~ g} (J : g ~ h) → is-equiv (λ (K : H ~ I) → right-whisker-concat-htpy K J) is-equiv-right-whisker-concat-htpy J = is-equiv-map-Π-is-fiberwise-equiv ( λ x → is-equiv-right-whisker-concat (J x)) ```