# Principal lower sets of large posets ```agda module order-theory.principal-lower-sets-large-posets where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-subposets open import order-theory.large-subpreorders open import order-theory.similarity-of-elements-large-posets ``` </details> ## Idea The **principal lower set** `↓{x}` of an element `x` of a [large poset](order-theory.large-posets.md) `P` is the [large subposet](order-theory.large-subposets.md) consisting of all elements `y ≤ x` in `P`. Two elements `x` and `y` in a large poset `P` are [similar](order-theory.similarity-of-elements-large-posets.md) if and only if they have the same principal lower sets, and if `x` and `y` are of the same [universe level](foundation.universe-levels.md), then `x` and `y` are equal if and only if they have the same principal lower sets. To see this, note that if `↓{x} = ↓{y}`, then we have the implications `(x ≤ x) → (x ≤ y)` and `(y ≤ y) → (y ≤ x)`. ## Definitions ### The predicate of being a principal lower set of an element ```agda module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 : Level} (x : type-Large-Poset P l1) {γ : Level → Level} (S : Large-Subposet γ P) where is-principal-lower-set-Large-Subposet : UUω is-principal-lower-set-Large-Subposet = {l : Level} (y : type-Large-Poset P l) → leq-Large-Poset P y x ↔ is-in-Large-Subposet P S y ``` ### The principal lower set of an element ```agda module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 : Level} (x : type-Large-Poset P l1) where large-subpreorder-principal-lower-set-element-Large-Poset : Large-Subpreorder (λ l → β l l1) (large-preorder-Large-Poset P) large-subpreorder-principal-lower-set-element-Large-Poset y = leq-prop-Large-Poset P y x is-closed-under-sim-principal-lower-set-element-Large-Poset : is-closed-under-sim-Large-Subpreorder P ( large-subpreorder-principal-lower-set-element-Large-Poset) is-closed-under-sim-principal-lower-set-element-Large-Poset y z p q l = transitive-leq-Large-Poset P z y x l q principal-lower-set-element-Large-Poset : Large-Subposet (λ l → β l l1) P large-subpreorder-Large-Subposet principal-lower-set-element-Large-Poset = large-subpreorder-principal-lower-set-element-Large-Poset is-closed-under-sim-Large-Subposet principal-lower-set-element-Large-Poset = is-closed-under-sim-principal-lower-set-element-Large-Poset ``` ## Properties ### The principal lower sets `↓{x}` and `↓{y}` have the same elements if and only if `x` and `y` are similar ```agda module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 l2 : Level} {x : type-Large-Poset P l1} {y : type-Large-Poset P l2} where sim-has-same-elements-principal-lower-set-element-Large-Poset : has-same-elements-Large-Subposet P ( principal-lower-set-element-Large-Poset P x) ( principal-lower-set-element-Large-Poset P y) → sim-Large-Poset P x y pr1 (sim-has-same-elements-principal-lower-set-element-Large-Poset H) = forward-implication (H x) (refl-leq-Large-Poset P x) pr2 (sim-has-same-elements-principal-lower-set-element-Large-Poset H) = backward-implication (H y) (refl-leq-Large-Poset P y) has-same-elements-principal-lower-set-element-sim-Large-Poset : sim-Large-Poset P x y → has-same-elements-Large-Subposet P ( principal-lower-set-element-Large-Poset P x) ( principal-lower-set-element-Large-Poset P y) pr1 ( has-same-elements-principal-lower-set-element-sim-Large-Poset (H , K) z) = transitive-leq-Large-Poset P z x y H pr2 ( has-same-elements-principal-lower-set-element-sim-Large-Poset (H , K) z) = transitive-leq-Large-Poset P z y x K ``` ### For two elements `x` and `y` of a large poset of the same universe level, if the principal lower sets `↓{x}` and `↓{y}` have the same elements, then `x` and `y` are equal ```agda module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 : Level} (x y : type-Large-Poset P l1) where eq-has-same-elements-principal-lower-set-element-Large-Poset : has-same-elements-Large-Subposet P ( principal-lower-set-element-Large-Poset P x) ( principal-lower-set-element-Large-Poset P y) → x = y eq-has-same-elements-principal-lower-set-element-Large-Poset H = antisymmetric-leq-Large-Poset P x y ( pr1 (sim-has-same-elements-principal-lower-set-element-Large-Poset P H)) ( pr2 (sim-has-same-elements-principal-lower-set-element-Large-Poset P H)) ```