# Similarity of order preserving maps between large posets ```agda module order-theory.similarity-of-order-preserving-maps-large-posets where ``` <details><summary>Imports</summary> ```agda open import foundation.cartesian-product-types open import foundation.universe-levels open import order-theory.large-posets open import order-theory.order-preserving-maps-large-posets open import order-theory.similarity-of-elements-large-posets open import order-theory.similarity-of-order-preserving-maps-large-preorders ``` </details> ## Idea Consider two [order preserving maps](order-theory.order-preserving-maps-large-posets.md) `f : hom-Large-Poset γf P Q` and `g : hom-Large-Poset γg P Q` between the same two [large posets](order-theory.large-posets.md) `P` and `Q`, but each specified with their own universe level reindexing functions. We say that `f` and `g` are **similar** if the values `f x` and `g x` are [similar](order-theory.similarity-of-elements-large-posets.md) for each `x : P`. In other words, a **similarity of order preserving maps** between `f` and `g` consists of an assignment `x ↦ h x` where ```text h x : f x ≈ g x ``` for each `x : type-Large-Poset P`. In informal writing we will use the notation `f ≈ g` to assert that the order preserving map `f` is similar to the order preserving map `g`. ## Definitions ### Similarity of order preserving maps between large posets ```agda module _ {αP αQ γf γg : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (f : hom-Large-Poset γf P Q) (g : hom-Large-Poset γg P Q) where sim-hom-Large-Poset : UUω sim-hom-Large-Poset = sim-hom-Large-Preorder ( large-preorder-Large-Poset P) ( large-preorder-Large-Poset Q) ( f) ( g) ``` ### The reflexive similarity of order preserving maps between large posets ```agda module _ {αP αQ γf : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (f : hom-Large-Poset γf P Q) where refl-sim-hom-Large-Poset : sim-hom-Large-Poset P Q f f refl-sim-hom-Large-Poset = refl-sim-hom-Large-Preorder ( large-preorder-Large-Poset P) ( large-preorder-Large-Poset Q) ( f) ``` ## Properties ### Order preserving maps with the same universe level reindexing function are homotopic if and only if they are similar ```agda module _ {αP αQ γ : Level → Level} {βP βQ : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (f : hom-Large-Poset γ P Q) (g : hom-Large-Poset γ P Q) where sim-htpy-hom-Large-Poset : htpy-hom-Large-Poset P Q f g → sim-hom-Large-Poset P Q f g sim-htpy-hom-Large-Poset = sim-htpy-hom-Large-Preorder ( large-preorder-Large-Poset P) ( large-preorder-Large-Poset Q) ( f) ( g) htpy-sim-hom-Large-Poset : sim-hom-Large-Poset P Q f g → htpy-hom-Large-Poset P Q f g htpy-sim-hom-Large-Poset H x = eq-sim-Large-Poset Q ( map-hom-Large-Poset P Q f x) ( map-hom-Large-Poset P Q g x) ( H x) ```