# Upper bounds in large posets ```agda module order-theory.upper-bounds-large-posets where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets ``` </details> ## Idea A **binary upper bound** of two elements `a` and `b` of a large poset `P` is an element `x` of `P` such that `a ≤ x` and `b ≤ x` both hold. Similarly, an **upper bound** of a family `a : I → P` of elements of `P` is an element `x` of `P` such that the inequality `(a i) ≤ x` holds for every `i : I`. ## Definitions ### The predicate of being an upper bound of a family of elements ```agda module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Poset P l2) where is-upper-bound-prop-family-of-elements-Large-Poset : {l3 : Level} (y : type-Large-Poset P l3) → Prop (β l2 l3 ⊔ l1) is-upper-bound-prop-family-of-elements-Large-Poset y = Π-Prop I (λ i → leq-prop-Large-Poset P (x i) y) is-upper-bound-family-of-elements-Large-Poset : {l3 : Level} (y : type-Large-Poset P l3) → UU (β l2 l3 ⊔ l1) is-upper-bound-family-of-elements-Large-Poset y = type-Prop (is-upper-bound-prop-family-of-elements-Large-Poset y) is-prop-is-upper-bound-family-of-elements-Large-Poset : {l3 : Level} (y : type-Large-Poset P l3) → is-prop (is-upper-bound-family-of-elements-Large-Poset y) is-prop-is-upper-bound-family-of-elements-Large-Poset y = is-prop-type-Prop (is-upper-bound-prop-family-of-elements-Large-Poset y) ``` ## Properties ### An element `x : Π-Large-Poset P` of a dependent product of large posets `P i` indexed by `i : I` is an upper bound of a family `a : J → Π-Large-Poset P` if and only if `x i` is an upper bound of the family `(j ↦ a j i) : J → P i` of elements of `P i` ```agda module _ {α : Level → Level} {β : Level → Level → Level} {l1 : Level} {I : UU l1} (P : I → Large-Poset α β) {l2 l3 : Level} {J : UU l2} (a : J → type-Π-Large-Poset P l3) {l4 : Level} (x : type-Π-Large-Poset P l4) where is-upper-bound-family-of-elements-Π-Large-Poset : ( (i : I) → is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)) → is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x is-upper-bound-family-of-elements-Π-Large-Poset H j i = H i j map-inv-is-upper-bound-family-of-elements-Π-Large-Poset : is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x → (i : I) → is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i) map-inv-is-upper-bound-family-of-elements-Π-Large-Poset H i j = H j i logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset : ( (i : I) → is-upper-bound-family-of-elements-Large-Poset (P i) (λ j → a j i) (x i)) ↔ is-upper-bound-family-of-elements-Large-Poset (Π-Large-Poset P) a x pr1 logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset = is-upper-bound-family-of-elements-Π-Large-Poset pr2 logical-equivalence-is-upper-bound-family-of-elements-Π-Large-Poset = map-inv-is-upper-bound-family-of-elements-Π-Large-Poset ```