# Noncoherent H-spaces ```agda module structured-types.noncoherent-h-spaces where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels open import structured-types.pointed-types ``` </details> ## Idea A **noncoherent H-space** is a [pointed type](structured-types.pointed-types.md) `A` [equipped](foundation.structure.md) with a binary operation `μ` and [homotopies](foundation-core.homotopies.md) `(λ x → μ point x) ~ id` and `λ x → μ x point ~ id`. If `A` is a [connected](foundation.connected-types.md) H-space, then `λ x → μ a x` and `λ x → μ x a` are [equivalences](foundation-core.equivalences.md) for each `a : A`. ## Definitions ### Unital binary operations on pointed types ```agda unit-laws-mul-Pointed-Type : {l : Level} (A : Pointed-Type l) (μ : (x y : type-Pointed-Type A) → type-Pointed-Type A) → UU l unit-laws-mul-Pointed-Type A μ = unit-laws μ (point-Pointed-Type A) unital-mul-Pointed-Type : {l : Level} → Pointed-Type l → UU l unital-mul-Pointed-Type A = Σ ( type-Pointed-Type A → type-Pointed-Type A → type-Pointed-Type A) ( unit-laws-mul-Pointed-Type A) ``` ### Noncoherent H-Spaces ```agda noncoherent-h-space-structure : {l : Level} (A : Pointed-Type l) → UU l noncoherent-h-space-structure A = Σ ( (x y : type-Pointed-Type A) → type-Pointed-Type A) ( λ μ → unit-laws μ (point-Pointed-Type A)) Noncoherent-H-Space : (l : Level) → UU (lsuc l) Noncoherent-H-Space l = Σ (Pointed-Type l) (noncoherent-h-space-structure) module _ {l : Level} (A : Noncoherent-H-Space l) where pointed-type-Noncoherent-H-Space : Pointed-Type l pointed-type-Noncoherent-H-Space = pr1 A type-Noncoherent-H-Space : UU l type-Noncoherent-H-Space = type-Pointed-Type pointed-type-Noncoherent-H-Space point-Noncoherent-H-Space : type-Noncoherent-H-Space point-Noncoherent-H-Space = point-Pointed-Type pointed-type-Noncoherent-H-Space mul-Noncoherent-H-Space : type-Noncoherent-H-Space → type-Noncoherent-H-Space → type-Noncoherent-H-Space mul-Noncoherent-H-Space = pr1 (pr2 A) unit-laws-mul-Noncoherent-H-Space : unit-laws mul-Noncoherent-H-Space point-Noncoherent-H-Space unit-laws-mul-Noncoherent-H-Space = pr2 (pr2 A) left-unit-law-mul-Noncoherent-H-Space : (x : type-Noncoherent-H-Space) → mul-Noncoherent-H-Space point-Noncoherent-H-Space x = x left-unit-law-mul-Noncoherent-H-Space = pr1 unit-laws-mul-Noncoherent-H-Space right-unit-law-mul-Noncoherent-H-Space : (x : type-Noncoherent-H-Space) → mul-Noncoherent-H-Space x point-Noncoherent-H-Space = x right-unit-law-mul-Noncoherent-H-Space = pr2 unit-laws-mul-Noncoherent-H-Space ```