# Dependent universal property of suspensions ```agda module synthetic-homotopy-theory.dependent-universal-property-suspensions where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-dependent-functions open import foundation.constant-maps open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.dependent-cocones-under-spans open import synthetic-homotopy-theory.dependent-suspension-structures open import synthetic-homotopy-theory.suspension-structures ``` </details> ## Idea This is the dependent analog of the [universal property of suspensions](synthetic-homotopy-theory.universal-property-suspensions.md). ## Definition ### The dependent universal property of suspensions ```agda dependent-ev-suspension : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (s : suspension-structure X Y) (B : Y → UU l3) → ((y : Y) → B y) → dependent-suspension-structure B s pr1 (dependent-ev-suspension s B f) = f (north-suspension-structure s) pr1 (pr2 (dependent-ev-suspension s B f)) = f (south-suspension-structure s) pr2 (pr2 (dependent-ev-suspension s B f)) = apd f ∘ meridian-suspension-structure s module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (s : suspension-structure X Y) where dependent-universal-property-suspension : UUω dependent-universal-property-suspension = {l : Level} (B : Y → UU l) → is-equiv (dependent-ev-suspension s B) ``` #### Coherence between `dependent-ev-suspension` and `dependent-cocone-map` ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} where triangle-dependent-ev-suspension : (s : suspension-structure X Y) → (B : Y → UU l3) → ( ( map-equiv ( equiv-dependent-suspension-structure-suspension-cocone s B)) ∘ ( dependent-cocone-map ( terminal-map X) ( terminal-map X) ( suspension-cocone-suspension-structure s) ( B))) ~ ( dependent-ev-suspension s B) triangle-dependent-ev-suspension s B = refl-htpy ```