# Rigid objects in a category ```agda module category-theory.rigid-objects-categories where ``` <details><summary>Imports</summary> ```agda open import category-theory.categories open import category-theory.rigid-objects-precategories open import foundation.propositions open import foundation.universe-levels ``` </details> ## Idea A **rigid object** in a [category](category-theory.categories.md) is an object whose [automorphism group](group-theory.automorphism-groups.md) is [trivial](group-theory.trivial-groups.md). ## Definitions ### The predicate of being rigid ```agda module _ {l1 l2 : Level} (C : Category l1 l2) (x : obj-Category C) where is-rigid-obj-prop-Category : Prop l2 is-rigid-obj-prop-Category = is-rigid-obj-prop-Precategory (precategory-Category C) x is-rigid-obj-Category : UU l2 is-rigid-obj-Category = type-Prop is-rigid-obj-prop-Category is-prop-is-rigid-obj-Category : is-prop is-rigid-obj-Category is-prop-is-rigid-obj-Category = is-prop-type-Prop is-rigid-obj-prop-Category ``` ### The type of rigid objects in a category ```agda rigid-obj-Category : {l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2) rigid-obj-Category C = rigid-obj-Precategory (precategory-Category C) module _ {l1 l2 : Level} (C : Category l1 l2) where obj-rigid-obj-Category : rigid-obj-Category C → obj-Category C obj-rigid-obj-Category = obj-rigid-obj-Precategory (precategory-Category C) is-rigid-rigid-obj-Category : (x : rigid-obj-Category C) → is-rigid-obj-Category C (obj-rigid-obj-Category x) is-rigid-rigid-obj-Category = is-rigid-rigid-obj-Precategory (precategory-Category C) ``` ## See also - Every object in a category is rigid if and only if it is [gaunt](category-theory.gaunt-categories.md). ## External links - [rigid object](https://ncatlab.org/nlab/show/rigid+object) at $n$Lab