# Categories ```agda module category-theory.categories where ``` <details><summary>Imports</summary> ```agda open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.isomorphisms-in-precategories open import category-theory.nonunital-precategories open import category-theory.precategories open import category-theory.preunivalent-categories open import foundation.1-types open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.surjective-maps open import foundation.universe-levels ``` </details> ## Idea A {{#concept "category" Agda=Category}} in Homotopy Type Theory is a [precategory](category-theory.precategories.md) for which the [identifications](foundation-core.identity-types.md) between the objects are the [isomorphisms](category-theory.isomorphisms-in-precategories.md). More specifically, an equality between objects gives rise to an isomorphism between them, by the J-rule. A precategory is a category if this function, called `iso-eq`, is an [equivalence](foundation-core.equivalences.md). In particular, being a category is a [proposition](foundation-core.propositions.md) since `is-equiv` is a proposition. ## Definitions ### The predicate on precategories of being a category ```agda module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-category-prop-Precategory : Prop (l1 ⊔ l2) is-category-prop-Precategory = Π-Prop ( obj-Precategory C) ( λ x → Π-Prop ( obj-Precategory C) ( λ y → is-equiv-Prop (iso-eq-Precategory C x y))) is-category-Precategory : UU (l1 ⊔ l2) is-category-Precategory = type-Prop is-category-prop-Precategory is-prop-is-category-Precategory : is-prop is-category-Precategory is-prop-is-category-Precategory = is-prop-type-Prop is-category-prop-Precategory ``` ### The type of categories ```agda Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Category l1 l2 = Σ (Precategory l1 l2) (is-category-Precategory) module _ {l1 l2 : Level} (C : Category l1 l2) where precategory-Category : Precategory l1 l2 precategory-Category = pr1 C obj-Category : UU l1 obj-Category = obj-Precategory precategory-Category hom-set-Category : obj-Category → obj-Category → Set l2 hom-set-Category = hom-set-Precategory precategory-Category hom-Category : obj-Category → obj-Category → UU l2 hom-Category = hom-Precategory precategory-Category is-set-hom-Category : (x y : obj-Category) → is-set (hom-Category x y) is-set-hom-Category = is-set-hom-Precategory precategory-Category comp-hom-Category : {x y z : obj-Category} → hom-Category y z → hom-Category x y → hom-Category x z comp-hom-Category = comp-hom-Precategory precategory-Category associative-comp-hom-Category : {x y z w : obj-Category} (h : hom-Category z w) (g : hom-Category y z) (f : hom-Category x y) → comp-hom-Category (comp-hom-Category h g) f = comp-hom-Category h (comp-hom-Category g f) associative-comp-hom-Category = associative-comp-hom-Precategory precategory-Category involutive-eq-associative-comp-hom-Category : {x y z w : obj-Category} (h : hom-Category z w) (g : hom-Category y z) (f : hom-Category x y) → comp-hom-Category (comp-hom-Category h g) f =ⁱ comp-hom-Category h (comp-hom-Category g f) involutive-eq-associative-comp-hom-Category = involutive-eq-associative-comp-hom-Precategory precategory-Category associative-composition-operation-Category : associative-composition-operation-binary-family-Set hom-set-Category associative-composition-operation-Category = associative-composition-operation-Precategory precategory-Category id-hom-Category : {x : obj-Category} → hom-Category x x id-hom-Category = id-hom-Precategory precategory-Category left-unit-law-comp-hom-Category : {x y : obj-Category} (f : hom-Category x y) → comp-hom-Category id-hom-Category f = f left-unit-law-comp-hom-Category = left-unit-law-comp-hom-Precategory precategory-Category right-unit-law-comp-hom-Category : {x y : obj-Category} (f : hom-Category x y) → comp-hom-Category f id-hom-Category = f right-unit-law-comp-hom-Category = right-unit-law-comp-hom-Precategory precategory-Category is-unital-composition-operation-Category : is-unital-composition-operation-binary-family-Set hom-set-Category comp-hom-Category is-unital-composition-operation-Category = is-unital-composition-operation-Precategory precategory-Category is-category-Category : is-category-Precategory precategory-Category is-category-Category = pr2 C ``` ### The underlying nonunital precategory of a category ```agda module _ {l1 l2 : Level} (C : Category l1 l2) where nonunital-precategory-Category : Nonunital-Precategory l1 l2 nonunital-precategory-Category = nonunital-precategory-Precategory (precategory-Category C) ``` ### The underlying preunivalent category of a category ```agda module _ {l1 l2 : Level} (C : Category l1 l2) where is-preunivalent-category-Category : is-preunivalent-Precategory (precategory-Category C) is-preunivalent-category-Category x y = is-emb-is-equiv (is-category-Category C x y) preunivalent-category-Category : Preunivalent-Category l1 l2 pr1 preunivalent-category-Category = precategory-Category C pr2 preunivalent-category-Category = is-preunivalent-category-Category ``` ### The total hom-type of a category ```agda total-hom-Category : {l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2) total-hom-Category C = total-hom-Precategory (precategory-Category C) obj-total-hom-Category : {l1 l2 : Level} (C : Category l1 l2) → total-hom-Category C → obj-Category C × obj-Category C obj-total-hom-Category C = obj-total-hom-Precategory (precategory-Category C) ``` ### Equalities induce morphisms ```agda module _ {l1 l2 : Level} (C : Category l1 l2) (x y : obj-Category C) where hom-eq-Category : x = y → hom-Category C x y hom-eq-Category = hom-eq-Precategory (precategory-Category C) x y hom-inv-eq-Category : x = y → hom-Category C y x hom-inv-eq-Category = hom-inv-eq-Precategory (precategory-Category C) x y ``` ### Pre- and postcomposition by a morphism ```agda precomp-hom-Category : {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} (f : hom-Category C x y) (z : obj-Category C) → hom-Category C y z → hom-Category C x z precomp-hom-Category C = precomp-hom-Precategory (precategory-Category C) postcomp-hom-Category : {l1 l2 : Level} (C : Category l1 l2) {x y : obj-Category C} (f : hom-Category C x y) (z : obj-Category C) → hom-Category C z x → hom-Category C z y postcomp-hom-Category C = postcomp-hom-Precategory (precategory-Category C) ``` ## Properties ### The objects in a category form a 1-type The type of identities between two objects in a category is equivalent to the type of isomorphisms between them. But this type is a set, and thus the identity type is a set. ```agda module _ {l1 l2 : Level} (C : Category l1 l2) where is-1-type-obj-Category : is-1-type (obj-Category C) is-1-type-obj-Category = is-1-type-obj-Preunivalent-Category (preunivalent-category-Category C) obj-1-type-Category : 1-Type l1 obj-1-type-Category = obj-1-type-Preunivalent-Category (preunivalent-category-Category C) ``` ### The total hom-type of a category is a 1-type ```agda module _ {l1 l2 : Level} (C : Category l1 l2) where is-1-type-total-hom-Category : is-1-type (total-hom-Category C) is-1-type-total-hom-Category = is-1-type-total-hom-Preunivalent-Category (preunivalent-category-Category C) total-hom-1-type-Category : 1-Type (l1 ⊔ l2) total-hom-1-type-Category = total-hom-1-type-Preunivalent-Category (preunivalent-category-Category C) ``` ### A preunivalent category is a category if and only if `iso-eq` is surjective ```agda module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-surjective-iso-eq-prop-Precategory : Prop (l1 ⊔ l2) is-surjective-iso-eq-prop-Precategory = Π-Prop ( obj-Precategory C) ( λ x → Π-Prop ( obj-Precategory C) ( λ y → is-surjective-Prop ( iso-eq-Precategory C x y))) is-surjective-iso-eq-Precategory : UU (l1 ⊔ l2) is-surjective-iso-eq-Precategory = type-Prop is-surjective-iso-eq-prop-Precategory is-prop-is-surjective-iso-eq-Precategory : is-prop is-surjective-iso-eq-Precategory is-prop-is-surjective-iso-eq-Precategory = is-prop-type-Prop is-surjective-iso-eq-prop-Precategory ``` ```agda module _ {l1 l2 : Level} (C : Preunivalent-Category l1 l2) where is-category-is-surjective-iso-eq-Preunivalent-Category : is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C) → is-category-Precategory (precategory-Preunivalent-Category C) is-category-is-surjective-iso-eq-Preunivalent-Category is-surjective-iso-eq-C x y = is-equiv-is-emb-is-surjective ( is-surjective-iso-eq-C x y) ( is-preunivalent-Preunivalent-Category C x y) is-surjective-iso-eq-is-category-Preunivalent-Category : is-category-Precategory (precategory-Preunivalent-Category C) → is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C) is-surjective-iso-eq-is-category-Preunivalent-Category is-category-C x y = is-surjective-is-equiv (is-category-C x y) is-equiv-is-category-is-surjective-iso-eq-Preunivalent-Category : is-equiv is-category-is-surjective-iso-eq-Preunivalent-Category is-equiv-is-category-is-surjective-iso-eq-Preunivalent-Category = is-equiv-has-converse-is-prop ( is-prop-is-surjective-iso-eq-Precategory ( precategory-Preunivalent-Category C)) ( is-prop-is-category-Precategory (precategory-Preunivalent-Category C)) ( is-surjective-iso-eq-is-category-Preunivalent-Category) is-equiv-is-surjective-iso-eq-is-category-Preunivalent-Category : is-equiv is-surjective-iso-eq-is-category-Preunivalent-Category is-equiv-is-surjective-iso-eq-is-category-Preunivalent-Category = is-equiv-has-converse-is-prop ( is-prop-is-category-Precategory (precategory-Preunivalent-Category C)) ( is-prop-is-surjective-iso-eq-Precategory ( precategory-Preunivalent-Category C)) ( is-category-is-surjective-iso-eq-Preunivalent-Category) equiv-is-category-is-surjective-iso-eq-Preunivalent-Category : is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C) ≃ is-category-Precategory (precategory-Preunivalent-Category C) pr1 equiv-is-category-is-surjective-iso-eq-Preunivalent-Category = is-category-is-surjective-iso-eq-Preunivalent-Category pr2 equiv-is-category-is-surjective-iso-eq-Preunivalent-Category = is-equiv-is-category-is-surjective-iso-eq-Preunivalent-Category equiv-is-surjective-iso-eq-is-category-Preunivalent-Category : is-category-Precategory (precategory-Preunivalent-Category C) ≃ is-surjective-iso-eq-Precategory (precategory-Preunivalent-Category C) pr1 equiv-is-surjective-iso-eq-is-category-Preunivalent-Category = is-surjective-iso-eq-is-category-Preunivalent-Category pr2 equiv-is-surjective-iso-eq-is-category-Preunivalent-Category = is-equiv-is-surjective-iso-eq-is-category-Preunivalent-Category ```