# Equivalence relations ```agda module foundation-core.equivalence-relations where ``` <details><summary>Imports</summary> ```agda open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.inhabited-subtypes open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.unit-type open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.propositions ``` </details> ## Idea An equivalence relation is a relation valued in propositions, which is reflexive,symmetric, and transitive. ## Definition ```agda is-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : Relation-Prop l2 A) → UU (l1 ⊔ l2) is-equivalence-relation R = is-reflexive-Relation-Prop R × is-symmetric-Relation-Prop R × is-transitive-Relation-Prop R equivalence-relation : (l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1) equivalence-relation l A = Σ (Relation-Prop l A) is-equivalence-relation prop-equivalence-relation : {l1 l2 : Level} {A : UU l1} → equivalence-relation l2 A → Relation-Prop l2 A prop-equivalence-relation = pr1 sim-equivalence-relation : {l1 l2 : Level} {A : UU l1} → equivalence-relation l2 A → A → A → UU l2 sim-equivalence-relation R = type-Relation-Prop (prop-equivalence-relation R) abstract is-prop-sim-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) (x y : A) → is-prop (sim-equivalence-relation R x y) is-prop-sim-equivalence-relation R = is-prop-type-Relation-Prop (prop-equivalence-relation R) is-prop-is-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : Relation-Prop l2 A) → is-prop (is-equivalence-relation R) is-prop-is-equivalence-relation R = is-prop-product ( is-prop-is-reflexive-Relation-Prop R) ( is-prop-product ( is-prop-is-symmetric-Relation-Prop R) ( is-prop-is-transitive-Relation-Prop R)) is-equivalence-relation-Prop : {l1 l2 : Level} {A : UU l1} → Relation-Prop l2 A → Prop (l1 ⊔ l2) pr1 (is-equivalence-relation-Prop R) = is-equivalence-relation R pr2 (is-equivalence-relation-Prop R) = is-prop-is-equivalence-relation R is-equivalence-relation-prop-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) → is-equivalence-relation (prop-equivalence-relation R) is-equivalence-relation-prop-equivalence-relation R = pr2 R refl-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) → is-reflexive (sim-equivalence-relation R) refl-equivalence-relation R = pr1 (is-equivalence-relation-prop-equivalence-relation R) symmetric-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) → is-symmetric (sim-equivalence-relation R) symmetric-equivalence-relation R = pr1 (pr2 (is-equivalence-relation-prop-equivalence-relation R)) transitive-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) → is-transitive (sim-equivalence-relation R) transitive-equivalence-relation R = pr2 (pr2 (is-equivalence-relation-prop-equivalence-relation R)) inhabited-subtype-equivalence-relation : {l1 l2 : Level} {A : UU l1} → equivalence-relation l2 A → A → inhabited-subtype l2 A pr1 (inhabited-subtype-equivalence-relation R x) = prop-equivalence-relation R x pr2 (inhabited-subtype-equivalence-relation R x) = unit-trunc-Prop (x , refl-equivalence-relation R x) ``` ## Properties ### Symmetry induces equivalences `R(x,y) ≃ R(y,x)` ```agda iff-symmetric-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) {x y : A} → sim-equivalence-relation R x y ↔ sim-equivalence-relation R y x pr1 (iff-symmetric-equivalence-relation R) = symmetric-equivalence-relation R _ _ pr2 (iff-symmetric-equivalence-relation R) = symmetric-equivalence-relation R _ _ equiv-symmetric-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) {x y : A} → sim-equivalence-relation R x y ≃ sim-equivalence-relation R y x equiv-symmetric-equivalence-relation R = equiv-iff' ( prop-equivalence-relation R _ _) ( prop-equivalence-relation R _ _) ( iff-symmetric-equivalence-relation R) ``` ### Transitivity induces equivalences `R(y,z) ≃ R(x,z)` ```agda iff-transitive-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) {x y z : A} → sim-equivalence-relation R x y → (sim-equivalence-relation R y z ↔ sim-equivalence-relation R x z) pr1 (iff-transitive-equivalence-relation R r) s = transitive-equivalence-relation R _ _ _ s r pr2 (iff-transitive-equivalence-relation R r) s = transitive-equivalence-relation R _ _ _ ( s) ( symmetric-equivalence-relation R _ _ r) equiv-transitive-equivalence-relation : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) {x y z : A} → sim-equivalence-relation R x y → (sim-equivalence-relation R y z ≃ sim-equivalence-relation R x z) equiv-transitive-equivalence-relation R r = equiv-iff' ( prop-equivalence-relation R _ _) ( prop-equivalence-relation R _ _) ( iff-transitive-equivalence-relation R r) ``` ### Transitivity induces equivalences `R(x,y) ≃ R(x,z)` ```agda iff-transitive-equivalence-relation' : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) {x y z : A} → sim-equivalence-relation R y z → (sim-equivalence-relation R x y ↔ sim-equivalence-relation R x z) pr1 (iff-transitive-equivalence-relation' R r) = transitive-equivalence-relation R _ _ _ r pr2 (iff-transitive-equivalence-relation' R r) = transitive-equivalence-relation R _ _ _ ( symmetric-equivalence-relation R _ _ r) equiv-transitive-equivalence-relation' : {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) {x y z : A} → sim-equivalence-relation R y z → (sim-equivalence-relation R x y ≃ sim-equivalence-relation R x z) equiv-transitive-equivalence-relation' R r = equiv-iff' ( prop-equivalence-relation R _ _) ( prop-equivalence-relation R _ _) ( iff-transitive-equivalence-relation' R r) ``` ## Examples ### The indiscrete equivalence relation on a type ```agda indiscrete-equivalence-relation : {l1 : Level} (A : UU l1) → equivalence-relation lzero A pr1 (indiscrete-equivalence-relation A) x y = unit-Prop pr1 (pr2 (indiscrete-equivalence-relation A)) _ = star pr1 (pr2 (pr2 (indiscrete-equivalence-relation A))) _ _ _ = star pr2 (pr2 (pr2 (indiscrete-equivalence-relation A))) _ _ _ _ _ = star raise-indiscrete-equivalence-relation : {l1 : Level} (l2 : Level) (A : UU l1) → equivalence-relation l2 A pr1 (raise-indiscrete-equivalence-relation l A) x y = raise-unit-Prop l pr1 (pr2 (raise-indiscrete-equivalence-relation l A)) _ = raise-star pr1 (pr2 (pr2 (raise-indiscrete-equivalence-relation l A))) _ _ _ = raise-star pr2 (pr2 (pr2 (raise-indiscrete-equivalence-relation l A))) _ _ _ _ _ = raise-star ```