# Propositional truncations ```agda module foundation.propositional-truncations where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.functoriality-cartesian-product-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.truncations open import foundation.universal-property-propositional-truncation open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.coproduct-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.precomposition-dependent-functions open import foundation-core.precomposition-functions open import foundation-core.sections open import foundation-core.sets open import foundation-core.transport-along-identifications open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea We have specified what it means to be a propositional truncation in the file `foundation.universal-property-propositional-truncation`. Here we use the postulate of the existence of truncations at all levels, found in the file `foundation.truncations`, to show that propositional truncations exist. ## Definition ```agda type-trunc-Prop : {l : Level} → UU l → UU l type-trunc-Prop = type-trunc neg-one-𝕋 unit-trunc-Prop : {l : Level} {A : UU l} → A → type-trunc-Prop A unit-trunc-Prop = unit-trunc is-prop-type-trunc-Prop : {l : Level} {A : UU l} → is-prop (type-trunc-Prop A) is-prop-type-trunc-Prop = is-trunc-type-trunc all-elements-equal-type-trunc-Prop : {l : Level} {A : UU l} → all-elements-equal (type-trunc-Prop A) all-elements-equal-type-trunc-Prop {l} {A} = eq-is-prop' (is-prop-type-trunc-Prop {l} {A}) trunc-Prop : {l : Level} → UU l → Prop l trunc-Prop = trunc neg-one-𝕋 ║_║₋₁ : {l : Level} → UU l → UU l ║_║₋₁ = type-trunc-Prop ``` **Notation.** The [box drawings double vertical](https://codepoints.net/U+2551) symbol `║` in the propositional truncation notation `║_║₋₁` can be inserted with `agda-input` using the escape sequence `\--=` and selecting the second item in the list. ## Properties ### The condition in the induction principle is a property ```agda abstract is-prop-condition-ind-trunc-Prop' : {l1 l2 : Level} {A : UU l1} {P : type-trunc-Prop A → UU l2} → ( (x y : type-trunc-Prop A) (u : P x) (v : P y) → tr P (all-elements-equal-type-trunc-Prop x y) u = v) → (x : type-trunc-Prop A) → is-prop (P x) is-prop-condition-ind-trunc-Prop' {P = P} H x = is-prop-all-elements-equal ( λ u v → ( ap ( λ γ → tr P γ u) ( eq-is-contr (is-prop-type-trunc-Prop x x))) ∙ ( H x x u v)) ``` ### The induction principle for propositional truncations ```agda ind-trunc-Prop' : {l l1 : Level} {A : UU l1} (P : type-trunc-Prop A → UU l) (f : (x : A) → P (unit-trunc-Prop x)) (H : (x y : type-trunc-Prop A) (u : P x) (v : P y) → tr P (all-elements-equal-type-trunc-Prop x y) u = v) → (x : type-trunc-Prop A) → P x ind-trunc-Prop' P f H = function-dependent-universal-property-trunc ( λ x → pair (P x) (is-prop-condition-ind-trunc-Prop' H x)) ( f) ``` ### The propositional induction principle for propositional truncations ```agda module _ {l l1 : Level} {A : UU l1} (P : type-trunc-Prop A → Prop l) where abstract ind-trunc-Prop : ((x : A) → type-Prop (P (unit-trunc-Prop x))) → (( y : type-trunc-Prop A) → type-Prop (P y)) ind-trunc-Prop f = ind-trunc-Prop' (type-Prop ∘ P) f ( λ x y u v → eq-is-prop (is-prop-type-Prop (P y))) compute-ind-trunc-Prop : is-section (precomp-Π unit-trunc-Prop (type-Prop ∘ P)) (ind-trunc-Prop) compute-ind-trunc-Prop h = eq-is-prop (is-prop-Π (λ x → is-prop-type-Prop (P (unit-trunc-Prop x)))) ``` ### The propositional recursion principle for propositional truncations ```agda module _ {l l1 : Level} {A : UU l1} (P : Prop l) where abstract rec-trunc-Prop : (A → type-Prop P) → (type-trunc-Prop A → type-Prop P) rec-trunc-Prop = ind-trunc-Prop (λ _ → P) compute-rec-trunc-Prop : is-section (precomp unit-trunc-Prop (type-Prop P)) (rec-trunc-Prop) compute-rec-trunc-Prop = compute-ind-trunc-Prop (λ _ → P) ``` ### The defined propositional truncations are propositional truncations ```agda abstract is-propositional-truncation-trunc-Prop : {l : Level} (A : UU l) → is-propositional-truncation (trunc-Prop A) unit-trunc-Prop is-propositional-truncation-trunc-Prop A = is-propositional-truncation-extension-property ( trunc-Prop A) ( unit-trunc-Prop) ( λ Q → ind-trunc-Prop (λ x → Q)) ``` ### The defined propositional truncations satisfy the universal property of propositional truncations ```agda abstract universal-property-trunc-Prop : {l : Level} (A : UU l) → universal-property-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop) universal-property-trunc-Prop A = universal-property-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop) ( is-propositional-truncation-trunc-Prop A) abstract map-universal-property-trunc-Prop : {l1 l2 : Level} {A : UU l1} (P : Prop l2) → (A → type-Prop P) → type-hom-Prop (trunc-Prop A) P map-universal-property-trunc-Prop {A = A} P f = map-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop) ( is-propositional-truncation-trunc-Prop A) ( P) ( f) abstract apply-universal-property-trunc-Prop : {l1 l2 : Level} {A : UU l1} (t : type-trunc-Prop A) (P : Prop l2) → (A → type-Prop P) → type-Prop P apply-universal-property-trunc-Prop t P f = map-universal-property-trunc-Prop P f t abstract apply-twice-universal-property-trunc-Prop : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (u : type-trunc-Prop A) (v : type-trunc-Prop B) (P : Prop l3) → (A → B → type-Prop P) → type-Prop P apply-twice-universal-property-trunc-Prop u v P f = apply-universal-property-trunc-Prop u P ( λ x → apply-universal-property-trunc-Prop v P (f x)) abstract apply-three-times-universal-property-trunc-Prop : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (u : type-trunc-Prop A) (v : type-trunc-Prop B) (w : type-trunc-Prop C) → (P : Prop l4) → (A → B → C → type-Prop P) → type-Prop P apply-three-times-universal-property-trunc-Prop u v w P f = apply-universal-property-trunc-Prop u P ( λ x → apply-twice-universal-property-trunc-Prop v w P (f x)) ``` ### The propositional truncation of a type is `k+1`-truncated ```agda is-trunc-trunc-Prop : {l : Level} (k : 𝕋) {A : UU l} → is-trunc (succ-𝕋 k) (type-trunc-Prop A) is-trunc-trunc-Prop k = is-trunc-is-prop k is-prop-type-trunc-Prop truncated-type-trunc-Prop : {l : Level} (k : 𝕋) → UU l → Truncated-Type l (succ-𝕋 k) pr1 (truncated-type-trunc-Prop k A) = type-trunc-Prop A pr2 (truncated-type-trunc-Prop k A) = is-trunc-trunc-Prop k set-trunc-Prop : {l : Level} → UU l → Set l set-trunc-Prop = truncated-type-trunc-Prop neg-one-𝕋 ``` ### A proposition is equivalent to its propositional truncation ```agda module _ {l : Level} (A : Prop l) where equiv-unit-trunc-Prop : type-Prop A ≃ type-trunc-Prop (type-Prop A) equiv-unit-trunc-Prop = equiv-unit-trunc A ``` ### The propositional truncation is idempotent ```agda module _ {l : Level} (A : UU l) where abstract map-idempotent-trunc-Prop : type-trunc-Prop (type-trunc-Prop A) → type-trunc-Prop A map-idempotent-trunc-Prop = map-universal-property-trunc-Prop (trunc-Prop A) id abstract is-equiv-map-idempotent-trunc-Prop : is-equiv map-idempotent-trunc-Prop is-equiv-map-idempotent-trunc-Prop = is-equiv-has-converse-is-prop ( is-prop-type-trunc-Prop) ( is-prop-type-trunc-Prop) ( unit-trunc-Prop) idempotent-trunc-Prop : type-trunc-Prop (type-trunc-Prop A) ≃ type-trunc-Prop A pr1 idempotent-trunc-Prop = map-idempotent-trunc-Prop pr2 idempotent-trunc-Prop = is-equiv-map-idempotent-trunc-Prop abstract is-equiv-map-inv-idempotent-trunc-Prop : is-equiv (unit-trunc-Prop {A = type-trunc-Prop A}) is-equiv-map-inv-idempotent-trunc-Prop = is-equiv-has-converse-is-prop ( is-prop-type-trunc-Prop) ( is-prop-type-trunc-Prop) ( map-idempotent-trunc-Prop) inv-idempotent-trunc-Prop : type-trunc-Prop A ≃ type-trunc-Prop (type-trunc-Prop A) pr1 inv-idempotent-trunc-Prop = unit-trunc-Prop pr2 inv-idempotent-trunc-Prop = is-equiv-map-inv-idempotent-trunc-Prop ``` ### Propositional truncations satisfy the dependent universal property of the propositional truncation ```agda abstract dependent-universal-property-trunc-Prop : {l : Level} {A : UU l} → dependent-universal-property-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop) dependent-universal-property-trunc-Prop {A = A} = dependent-universal-property-is-propositional-truncation ( trunc-Prop A) ( unit-trunc-Prop) ( is-propositional-truncation-trunc-Prop A) module _ {l1 l2 : Level} {A : UU l1} (P : type-trunc-Prop A → Prop l2) where equiv-dependent-universal-property-trunc-Prop : ((y : type-trunc-Prop A) → type-Prop (P y)) ≃ ((x : A) → type-Prop (P (unit-trunc-Prop x))) pr1 equiv-dependent-universal-property-trunc-Prop = precomp-Π unit-trunc-Prop (type-Prop ∘ P) pr2 equiv-dependent-universal-property-trunc-Prop = dependent-universal-property-trunc-Prop P apply-dependent-universal-property-trunc-Prop : (y : type-trunc-Prop A) → ((x : A) → type-Prop (P (unit-trunc-Prop x))) → type-Prop (P y) apply-dependent-universal-property-trunc-Prop y f = map-inv-equiv equiv-dependent-universal-property-trunc-Prop f y ``` ### Propositional truncations distribute over cartesian products ```agda equiv-product-trunc-Prop : {l1 l2 : Level} (A : UU l1) (A' : UU l2) → type-equiv-Prop ( trunc-Prop (A × A')) ( product-Prop (trunc-Prop A) (trunc-Prop A')) equiv-product-trunc-Prop A A' = pr1 ( center ( is-uniquely-unique-propositional-truncation ( trunc-Prop (A × A')) ( product-Prop (trunc-Prop A) (trunc-Prop A')) ( unit-trunc-Prop) ( map-product unit-trunc-Prop unit-trunc-Prop) ( is-propositional-truncation-trunc-Prop (A × A')) ( is-propositional-truncation-product ( trunc-Prop A) ( unit-trunc-Prop) ( trunc-Prop A') ( unit-trunc-Prop) ( is-propositional-truncation-trunc-Prop A) ( is-propositional-truncation-trunc-Prop A')))) map-distributive-trunc-product-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → type-trunc-Prop (A × B) → type-trunc-Prop A × type-trunc-Prop B map-distributive-trunc-product-Prop {l1} {l2} {A} {B} = map-universal-property-trunc-Prop ( pair ( type-trunc-Prop A × type-trunc-Prop B) ( is-prop-product is-prop-type-trunc-Prop is-prop-type-trunc-Prop)) ( map-product unit-trunc-Prop unit-trunc-Prop) map-inv-distributive-trunc-product-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → type-trunc-Prop A × type-trunc-Prop B → type-trunc-Prop (A × B) map-inv-distributive-trunc-product-Prop {l1} {l2} {A} {B} t = map-universal-property-trunc-Prop ( trunc-Prop (A × B)) ( λ x → map-universal-property-trunc-Prop ( trunc-Prop (A × B)) ( unit-trunc-Prop ∘ (pair x)) ( pr2 t)) ( pr1 t) abstract is-equiv-map-distributive-trunc-product-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-equiv (map-distributive-trunc-product-Prop {A = A} {B = B}) is-equiv-map-distributive-trunc-product-Prop = is-equiv-has-converse-is-prop ( is-prop-type-trunc-Prop) ( is-prop-product is-prop-type-trunc-Prop is-prop-type-trunc-Prop) ( map-inv-distributive-trunc-product-Prop) distributive-trunc-product-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → type-trunc-Prop (A × B) ≃ (type-trunc-Prop A × type-trunc-Prop B) pr1 distributive-trunc-product-Prop = map-distributive-trunc-product-Prop pr2 distributive-trunc-product-Prop = is-equiv-map-distributive-trunc-product-Prop abstract is-equiv-map-inv-distributive-trunc-product-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → is-equiv (map-inv-distributive-trunc-product-Prop {A = A} {B = B}) is-equiv-map-inv-distributive-trunc-product-Prop = is-equiv-has-converse-is-prop ( is-prop-product is-prop-type-trunc-Prop is-prop-type-trunc-Prop) ( is-prop-type-trunc-Prop) ( map-distributive-trunc-product-Prop) inv-distributive-trunc-product-Prop : {l1 l2 : Level} {A : UU l1} {B : UU l2} → ( type-trunc-Prop A × type-trunc-Prop B) ≃ type-trunc-Prop (A × B) pr1 inv-distributive-trunc-product-Prop = map-inv-distributive-trunc-product-Prop pr2 inv-distributive-trunc-product-Prop = is-equiv-map-inv-distributive-trunc-product-Prop ``` ### Propositional truncations of coproducts of types with themselves ```agda module _ {l : Level} {A : UU l} where map-trunc-Prop-diagonal-coproduct : type-trunc-Prop (A + A) → type-trunc-Prop A map-trunc-Prop-diagonal-coproduct = map-universal-property-trunc-Prop ( trunc-Prop A) ( unit-trunc ∘ rec-coproduct id id) map-inv-trunc-Prop-diagonal-coproduct : type-trunc-Prop A → type-trunc-Prop (A + A) map-inv-trunc-Prop-diagonal-coproduct = map-universal-property-trunc-Prop ( trunc-Prop (A + A)) ( unit-trunc ∘ (inl ∘ id)) abstract is-equiv-map-trunc-Prop-diagonal-coproduct : is-equiv map-trunc-Prop-diagonal-coproduct is-equiv-map-trunc-Prop-diagonal-coproduct = is-equiv-has-converse-is-prop is-prop-type-trunc-Prop is-prop-type-trunc-Prop map-inv-trunc-Prop-diagonal-coproduct is-equiv-map-inv-trunc-Prop-diagonal-coproduct : is-equiv map-inv-trunc-Prop-diagonal-coproduct is-equiv-map-inv-trunc-Prop-diagonal-coproduct = is-equiv-has-converse-is-prop is-prop-type-trunc-Prop is-prop-type-trunc-Prop map-trunc-Prop-diagonal-coproduct equiv-trunc-Prop-diagonal-coproduct : type-trunc-Prop (A + A) ≃ type-trunc-Prop A pr1 equiv-trunc-Prop-diagonal-coproduct = map-trunc-Prop-diagonal-coproduct pr2 equiv-trunc-Prop-diagonal-coproduct = is-equiv-map-trunc-Prop-diagonal-coproduct inv-equiv-trunc-Prop-diagonal-coproduct : type-trunc-Prop A ≃ type-trunc-Prop (A + A) pr1 inv-equiv-trunc-Prop-diagonal-coproduct = map-inv-trunc-Prop-diagonal-coproduct pr2 inv-equiv-trunc-Prop-diagonal-coproduct = is-equiv-map-inv-trunc-Prop-diagonal-coproduct ``` ## Table of files about propositional logic The following table gives an overview of basic constructions in propositional logic and related considerations. {{#include tables/propositional-logic.md}} ## External links - [bracket type](https://ncatlab.org/nlab/show/bracket+type) at $n$Lab