# `0`-Connected types ```agda module foundation.0-connected-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.constant-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.fiber-inclusions open import foundation.functoriality-set-truncation open import foundation.images open import foundation.inhabited-types open import foundation.mere-equality open import foundation.propositional-truncations open import foundation.set-truncations open import foundation.sets open import foundation.surjective-maps open import foundation.unit-type open import foundation.universal-property-contractible-types open import foundation.universal-property-unit-type open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.precomposition-functions open import foundation-core.propositions open import foundation-core.truncated-maps open import foundation-core.truncated-types open import foundation-core.truncation-levels ``` </details> ## Idea A type is said to be connected if its type of connected components, i.e., its set truncation, is contractible. ```agda is-0-connected-Prop : {l : Level} → UU l → Prop l is-0-connected-Prop A = is-contr-Prop (type-trunc-Set A) is-0-connected : {l : Level} → UU l → UU l is-0-connected A = type-Prop (is-0-connected-Prop A) is-prop-is-0-connected : {l : Level} (A : UU l) → is-prop (is-0-connected A) is-prop-is-0-connected A = is-prop-type-Prop (is-0-connected-Prop A) abstract is-inhabited-is-0-connected : {l : Level} {A : UU l} → is-0-connected A → is-inhabited A is-inhabited-is-0-connected {l} {A} C = apply-universal-property-trunc-Set' ( center C) ( set-Prop (trunc-Prop A)) ( unit-trunc-Prop) abstract mere-eq-is-0-connected : {l : Level} {A : UU l} → is-0-connected A → (x y : A) → mere-eq x y mere-eq-is-0-connected {A = A} H x y = apply-effectiveness-unit-trunc-Set (eq-is-contr H) abstract is-0-connected-mere-eq : {l : Level} {A : UU l} (a : A) → ((x : A) → mere-eq a x) → is-0-connected A is-0-connected-mere-eq {l} {A} a e = pair ( unit-trunc-Set a) ( apply-dependent-universal-property-trunc-Set' ( λ x → set-Prop (Id-Prop (trunc-Set A) (unit-trunc-Set a) x)) ( λ x → apply-effectiveness-unit-trunc-Set' (e x))) abstract is-0-connected-mere-eq-is-inhabited : {l : Level} {A : UU l} → is-inhabited A → ((x y : A) → mere-eq x y) → is-0-connected A is-0-connected-mere-eq-is-inhabited H K = apply-universal-property-trunc-Prop H ( is-0-connected-Prop _) ( λ a → is-0-connected-mere-eq a (K a)) is-0-connected-is-surjective-point : {l1 : Level} {A : UU l1} (a : A) → is-surjective (point a) → is-0-connected A is-0-connected-is-surjective-point a H = is-0-connected-mere-eq a ( λ x → apply-universal-property-trunc-Prop ( H x) ( mere-eq-Prop a x) ( λ u → unit-trunc-Prop (pr2 u))) abstract is-surjective-point-is-0-connected : {l1 : Level} {A : UU l1} (a : A) → is-0-connected A → is-surjective (point a) is-surjective-point-is-0-connected a H x = apply-universal-property-trunc-Prop ( mere-eq-is-0-connected H a x) ( trunc-Prop (fiber (point a) x)) ( λ where refl → unit-trunc-Prop (star , refl)) is-trunc-map-ev-point-is-connected : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (a : A) → is-0-connected A → is-trunc (succ-𝕋 k) B → is-trunc-map k (ev-point' a {B}) is-trunc-map-ev-point-is-connected k {A} {B} a H K = is-trunc-map-comp k ( ev-point' star {B}) ( precomp (point a) B) ( is-trunc-map-is-equiv k ( universal-property-contr-is-contr star is-contr-unit B)) ( is-trunc-map-precomp-Π-is-surjective k ( is-surjective-point-is-0-connected a H) ( λ _ → (B , K))) equiv-dependent-universal-property-is-0-connected : {l1 : Level} {A : UU l1} (a : A) → is-0-connected A → ( {l : Level} (P : A → Prop l) → ((x : A) → type-Prop (P x)) ≃ type-Prop (P a)) equiv-dependent-universal-property-is-0-connected a H P = ( equiv-universal-property-unit (type-Prop (P a))) ∘e ( equiv-dependent-universal-property-surjection-is-surjective ( point a) ( is-surjective-point-is-0-connected a H) ( P)) apply-dependent-universal-property-is-0-connected : {l1 : Level} {A : UU l1} (a : A) → is-0-connected A → {l : Level} (P : A → Prop l) → type-Prop (P a) → (x : A) → type-Prop (P x) apply-dependent-universal-property-is-0-connected a H P = map-inv-equiv (equiv-dependent-universal-property-is-0-connected a H P) abstract is-surjective-fiber-inclusion : {l1 l2 : Level} {A : UU l1} {B : A → UU l2} → is-0-connected A → (a : A) → is-surjective (fiber-inclusion B a) is-surjective-fiber-inclusion {B = B} C a (x , b) = apply-universal-property-trunc-Prop ( mere-eq-is-0-connected C a x) ( trunc-Prop (fiber (fiber-inclusion B a) (x , b))) ( λ where refl → unit-trunc-Prop (b , refl)) abstract mere-eq-is-surjective-fiber-inclusion : {l1 : Level} {A : UU l1} (a : A) → ({l : Level} (B : A → UU l) → is-surjective (fiber-inclusion B a)) → (x : A) → mere-eq a x mere-eq-is-surjective-fiber-inclusion a H x = apply-universal-property-trunc-Prop ( H (λ x → unit) (x , star)) ( mere-eq-Prop a x) ( λ u → unit-trunc-Prop (ap pr1 (pr2 u))) abstract is-0-connected-is-surjective-fiber-inclusion : {l1 : Level} {A : UU l1} (a : A) → ({l : Level} (B : A → UU l) → is-surjective (fiber-inclusion B a)) → is-0-connected A is-0-connected-is-surjective-fiber-inclusion a H = is-0-connected-mere-eq a (mere-eq-is-surjective-fiber-inclusion a H) is-0-connected-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A ≃ B) → is-0-connected B → is-0-connected A is-0-connected-equiv e = is-contr-equiv _ (equiv-trunc-Set e) is-0-connected-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A ≃ B) → is-0-connected A → is-0-connected B is-0-connected-equiv' e = is-0-connected-equiv (inv-equiv e) ``` ### `0`-connected types are closed under cartesian products ```agda module _ {l1 l2 : Level} (X : UU l1) (Y : UU l2) (p1 : is-0-connected X) (p2 : is-0-connected Y) where is-0-connected-product : is-0-connected (X × Y) is-0-connected-product = is-contr-equiv ( type-trunc-Set X × type-trunc-Set Y) ( equiv-distributive-trunc-product-Set X Y) ( is-contr-product p1 p2) ``` ### The unit type is `0`-connected ```agda abstract is-0-connected-unit : is-0-connected unit is-0-connected-unit = is-contr-equiv' unit equiv-unit-trunc-unit-Set is-contr-unit ``` ### A contractible type is `0`-connected ```agda is-0-connected-is-contr : {l : Level} (X : UU l) → is-contr X → is-0-connected X is-0-connected-is-contr X p = is-contr-equiv X (inv-equiv (equiv-unit-trunc-Set (X , is-set-is-contr p))) p ``` ### The image of a function with a `0`-connected domain is `0`-connected ```agda abstract is-0-connected-im-is-0-connected-domain : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-0-connected A → is-0-connected (im f) is-0-connected-im-is-0-connected-domain {A = A} {B} f C = apply-universal-property-trunc-Prop ( is-inhabited-is-0-connected C) ( is-contr-Prop _) ( λ a → is-contr-equiv' ( im (map-trunc-Set f)) ( equiv-trunc-im-Set f) ( is-contr-im ( trunc-Set B) ( unit-trunc-Set a) ( apply-dependent-universal-property-trunc-Set' ( λ x → set-Prop ( Id-Prop ( trunc-Set B) ( map-trunc-Set f x) ( map-trunc-Set f (unit-trunc-Set a)))) ( λ a' → apply-universal-property-trunc-Prop ( mere-eq-is-0-connected C a' a) ( Id-Prop ( trunc-Set B) ( map-trunc-Set f (unit-trunc-Set a')) ( map-trunc-Set f (unit-trunc-Set a))) ( λ where refl → refl))))) abstract is-0-connected-im-point' : {l1 : Level} {A : UU l1} (f : unit → A) → is-0-connected (im f) is-0-connected-im-point' f = is-0-connected-im-is-0-connected-domain f is-0-connected-unit ```