# The category of families of sets ```agda module foundation.category-of-families-of-sets where ``` <details><summary>Imports</summary> ```agda open import category-theory.categories open import category-theory.large-categories open import category-theory.large-function-categories open import category-theory.large-function-precategories open import category-theory.large-precategories open import category-theory.precategories open import foundation.category-of-sets open import foundation.universe-levels ``` </details> ## Idea The **[large category](category-theory.large-categories.md) of families of [sets](foundation.sets.md) over a type** `A` is the [large function category](category-theory.large-function-categories.md) `A → Set`. ## Definition ### The large precategory of families of sets over a type ```agda Family-Of-Sets-Large-Precategory : {l : Level} → UU l → Large-Precategory (λ l1 → l ⊔ lsuc l1) (λ l1 l2 → l ⊔ l1 ⊔ l2) Family-Of-Sets-Large-Precategory A = Large-Function-Precategory A Set-Large-Precategory ``` ### The small precategory of families of sets over a type ```agda Family-Of-Sets-Precategory : {l1 : Level} (l2 : Level) → UU l1 → Precategory (l1 ⊔ lsuc l2) (l1 ⊔ l2) Family-Of-Sets-Precategory l2 A = precategory-Large-Precategory (Family-Of-Sets-Large-Precategory A) l2 ``` ### The large category of families of sets over a type ```agda module _ {l : Level} (A : UU l) where Family-Of-Sets-Large-Category : Large-Category (λ l1 → l ⊔ lsuc l1) (λ l1 l2 → l ⊔ l1 ⊔ l2) Family-Of-Sets-Large-Category = Large-Function-Category A Set-Large-Category is-large-category-Family-Of-Sets-Large-Category : is-large-category-Large-Precategory (Family-Of-Sets-Large-Precategory A) is-large-category-Family-Of-Sets-Large-Category = is-large-category-Large-Category Family-Of-Sets-Large-Category ``` ### The small category of families of sets over a type ```agda module _ {l1 : Level} (l2 : Level) (A : UU l1) where Family-Of-Sets-Category : Category (l1 ⊔ lsuc l2) (l1 ⊔ l2) Family-Of-Sets-Category = category-Large-Category (Family-Of-Sets-Large-Category A) l2 is-category-Family-Of-Sets-Category : is-category-Precategory (Family-Of-Sets-Precategory l2 A) is-category-Family-Of-Sets-Category = is-category-Category Family-Of-Sets-Category ```