# Epimorphisms with respect to maps into sets ```agda module foundation.epimorphisms-with-respect-to-sets where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.identity-types open import foundation.injective-maps open import foundation.propositional-extensionality open import foundation.propositional-truncations open import foundation.sets open import foundation.surjective-maps open import foundation.unit-type open import foundation.universe-levels open import foundation-core.embeddings open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.precomposition-functions open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.univalence ``` </details> ## Idea An epimorphism with respect to maps into sets are maps `f : A → B` such that for every set `C` the precomposition function `(B → C) → (A → C)` is an embedding. ## Definition ```agda is-epimorphism-Set : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → UUω is-epimorphism-Set f = {l : Level} (C : Set l) → is-emb (precomp f (type-Set C)) ``` ## Properties ### Surjective maps are epimorphisms with respect to maps into sets ```agda abstract is-epimorphism-is-surjective-Set : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-surjective f → is-epimorphism-Set f is-epimorphism-is-surjective-Set H C = is-emb-is-injective ( is-set-function-type (is-set-type-Set C)) ( λ {g} {h} p → eq-htpy ( λ b → apply-universal-property-trunc-Prop ( H b) ( Id-Prop C (g b) (h b)) ( λ u → ( inv (ap g (pr2 u))) ∙ ( htpy-eq p (pr1 u)) ∙ ( ap h (pr2 u))))) ``` ### Maps that are epimorphisms with respect to maps into sets are surjective ```agda abstract is-surjective-is-epimorphism-Set : {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} → is-epimorphism-Set f → is-surjective f is-surjective-is-epimorphism-Set {l1} {l2} {A} {B} {f} H b = map-equiv ( equiv-eq ( ap ( pr1) ( htpy-eq ( is-injective-is-emb ( H (Prop-Set (l1 ⊔ l2))) { g} { h} ( eq-htpy ( λ a → eq-iff ( λ _ → unit-trunc-Prop (pair a refl)) ( λ _ → raise-star)))) ( b)))) ( raise-star) where g : B → Prop (l1 ⊔ l2) g y = raise-unit-Prop (l1 ⊔ l2) h : B → Prop (l1 ⊔ l2) h y = exists-structure-Prop A (λ x → f x = y) ``` ### There is at most one extension of a map into a set along a surjection For any surjective map `f : A ↠ B` and any map `g : A → C` into a set `C`, the type of extensions ```text Σ (B → C) (λ h → g ~ h ∘ f) ``` of `g` along `f` is a proposition. In [The universal property of set quotients](foundation.universal-property-set-quotients.md) we will show that this proposition is equivalent to the proposition ```text (a a' : A) → f a = f a' → g a = g a'. ``` ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A ↠ B) (C : Set l3) (g : A → type-Set C) where extension-along-surjection-Set : UU (l1 ⊔ l2 ⊔ l3) extension-along-surjection-Set = Σ (B → type-Set C) (λ h → g ~ h ∘ map-surjection f) abstract is-prop-extension-along-surjection-Set : is-prop extension-along-surjection-Set is-prop-extension-along-surjection-Set = is-prop-equiv' ( equiv-tot (λ h → equiv-funext ∘e equiv-inv _ g)) ( is-prop-map-is-emb ( is-epimorphism-is-surjective-Set ( is-surjective-map-surjection f) ( C)) ( g)) ``` ## See also - [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md) - [Dependent epimorphisms](foundation.dependent-epimorphisms.md) - [Epimorphisms](foundation.epimorphisms.md) - [Epimorphisms with respect to truncated types](foundation.epimorphisms-with-respect-to-truncated-types.md) - [The universal property of set quotients](foundation.universal-property-set-quotients.md)