# Epimorphisms with respect to truncated types ```agda module foundation.epimorphisms-with-respect-to-truncated-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-maps open import foundation.connected-maps open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.function-extensionality open import foundation.functoriality-truncation open import foundation.precomposition-functions open import foundation.sections open import foundation.truncation-equivalences open import foundation.truncations open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.truncated-types open import foundation-core.truncation-levels open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.codiagonals-of-maps open import synthetic-homotopy-theory.pushouts ``` </details> ## Idea A map `f : A → B` is said to be a **`k`-epimorphism** if the precomposition function ```text - ∘ f : (B → X) → (A → X) ``` is an embedding for every `k`-truncated type `X`. ## Definitions ### `k`-epimorphisms ```agda is-epimorphism-Truncated-Type : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → (A → B) → UUω is-epimorphism-Truncated-Type k f = {l : Level} (X : Truncated-Type l k) → is-emb (precomp f (type-Truncated-Type X)) ``` ## Properties ### Every `k+1`-epimorphism is a `k`-epimorphism ```agda is-epimorphism-is-epimorphism-succ-Truncated-Type : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-epimorphism-Truncated-Type (succ-𝕋 k) f → is-epimorphism-Truncated-Type k f is-epimorphism-is-epimorphism-succ-Truncated-Type k f H X = H (truncated-type-succ-Truncated-Type k X) ``` ### Every map is a `-1`-epimorphism ```agda is-neg-one-epimorphism : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-epimorphism-Truncated-Type neg-one-𝕋 f is-neg-one-epimorphism f P = is-emb-is-prop ( is-prop-function-type (is-prop-type-Prop P)) ( is-prop-function-type (is-prop-type-Prop P)) ``` ### Every `k`-equivalence is a `k`-epimorphism ```agda is-epimorphism-is-truncation-equivalence-Truncated-Type : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-truncation-equivalence k f → is-epimorphism-Truncated-Type k f is-epimorphism-is-truncation-equivalence-Truncated-Type k f H X = is-emb-is-equiv (is-equiv-precomp-is-truncation-equivalence k f H X) ``` ### A map is a `k`-epimorphism if and only if its `k`-truncation is a `k`-epimorphism ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-epimorphism-is-epimorphism-map-trunc-Truncated-Type : is-epimorphism-Truncated-Type k (map-trunc k f) → is-epimorphism-Truncated-Type k f is-epimorphism-is-epimorphism-map-trunc-Truncated-Type H X = is-emb-bottom-is-emb-top-is-equiv-coherence-square-maps ( precomp (map-trunc k f) (type-Truncated-Type X)) ( precomp unit-trunc (type-Truncated-Type X)) ( precomp unit-trunc (type-Truncated-Type X)) ( precomp f (type-Truncated-Type X)) ( precomp-coherence-square-maps ( unit-trunc) ( f) ( map-trunc k f) ( unit-trunc) ( inv-htpy (coherence-square-map-trunc k f)) ( type-Truncated-Type X)) ( is-truncation-trunc X) ( is-truncation-trunc X) ( H X) is-epimorphism-map-trunc-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → is-epimorphism-Truncated-Type k (map-trunc k f) is-epimorphism-map-trunc-is-epimorphism-Truncated-Type H X = is-emb-top-is-emb-bottom-is-equiv-coherence-square-maps ( precomp (map-trunc k f) (type-Truncated-Type X)) ( precomp unit-trunc (type-Truncated-Type X)) ( precomp unit-trunc (type-Truncated-Type X)) ( precomp f (type-Truncated-Type X)) ( precomp-coherence-square-maps ( unit-trunc) ( f) ( map-trunc k f) ( unit-trunc) ( inv-htpy (coherence-square-map-trunc k f)) ( type-Truncated-Type X)) ( is-truncation-trunc X) ( is-truncation-trunc X) ( H X) ``` ### The class of `k`-epimorphisms is closed under composition and has the right cancellation property ```agda module _ {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} {C : UU l3} (g : B → C) (f : A → B) where is-epimorphism-comp-Truncated-Type : is-epimorphism-Truncated-Type k g → is-epimorphism-Truncated-Type k f → is-epimorphism-Truncated-Type k (g ∘ f) is-epimorphism-comp-Truncated-Type eg ef X = is-emb-comp ( precomp f (type-Truncated-Type X)) ( precomp g (type-Truncated-Type X)) ( ef X) ( eg X) is-epimorphism-left-factor-Truncated-Type : is-epimorphism-Truncated-Type k (g ∘ f) → is-epimorphism-Truncated-Type k f → is-epimorphism-Truncated-Type k g is-epimorphism-left-factor-Truncated-Type ec ef X = is-emb-right-factor ( precomp f (type-Truncated-Type X)) ( precomp g (type-Truncated-Type X)) ( ef X) ( ec X) ``` ### A map `f` is a `k`-epimorphism if and only if the horizontal/vertical projections from `cocone {X} f f` are equivalences for all `k`-types `X` ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-equiv-diagonal-into-fibers-precomp-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → {l : Level} (X : Truncated-Type l k) → is-equiv (diagonal-into-fibers-precomp f (type-Truncated-Type X)) is-equiv-diagonal-into-fibers-precomp-is-epimorphism-Truncated-Type e X = is-equiv-map-section-family ( λ g → g , refl) ( λ g → is-proof-irrelevant-is-prop ( is-prop-map-is-emb (e X) (g ∘ f)) ( g , refl)) is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → {l : Level} (X : Truncated-Type l k) → is-equiv (diagonal-into-cocone f (type-Truncated-Type X)) is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type e X = is-equiv-comp ( map-equiv (compute-total-fiber-precomp f (type-Truncated-Type X))) ( diagonal-into-fibers-precomp f (type-Truncated-Type X)) ( is-equiv-diagonal-into-fibers-precomp-is-epimorphism-Truncated-Type e X) ( is-equiv-map-equiv ( compute-total-fiber-precomp f (type-Truncated-Type X))) is-equiv-horizontal-map-cocone-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → {l : Level} (X : Truncated-Type l k) → is-equiv (horizontal-map-cocone {X = type-Truncated-Type X} f f) is-equiv-horizontal-map-cocone-is-epimorphism-Truncated-Type e X = is-equiv-left-factor ( horizontal-map-cocone f f) ( diagonal-into-cocone f (type-Truncated-Type X)) ( is-equiv-id) ( is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type e X) is-equiv-vertical-map-cocone-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → {l : Level} (X : Truncated-Type l k) → is-equiv (vertical-map-cocone {X = type-Truncated-Type X} f f) is-equiv-vertical-map-cocone-is-epimorphism-Truncated-Type e X = is-equiv-left-factor ( vertical-map-cocone f f) ( diagonal-into-cocone f (type-Truncated-Type X)) ( is-equiv-id) ( is-equiv-diagonal-into-cocone-is-epimorphism-Truncated-Type e X) is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type : ( {l : Level} (X : Truncated-Type l k) → is-equiv (horizontal-map-cocone {X = type-Truncated-Type X} f f)) → is-epimorphism-Truncated-Type k f is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type h X = is-emb-is-contr-fibers-values ( precomp f (type-Truncated-Type X)) ( λ g → is-contr-equiv ( Σ ( B → (type-Truncated-Type X)) ( λ h → coherence-square-maps f f h g)) ( compute-fiber-precomp f (type-Truncated-Type X) g) ( is-contr-is-equiv-pr1 (h X) g)) is-epimorphism-is-equiv-vertical-map-cocone-Truncated-Type : ( {l : Level} (X : Truncated-Type l k) → is-equiv (vertical-map-cocone {X = type-Truncated-Type X} f f)) → is-epimorphism-Truncated-Type k f is-epimorphism-is-equiv-vertical-map-cocone-Truncated-Type h = is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type ( λ X → is-equiv-comp ( vertical-map-cocone f f) ( swap-cocone f f (type-Truncated-Type X)) ( is-equiv-swap-cocone f f (type-Truncated-Type X)) ( h X)) ``` ### The codiagonal of a `k`-epimorphism is a `k`-equivalence We consider the commutative diagram for any `k`-type `X`: ```text horizontal-map-cocone (B → X) <---------------------------- cocone f f X | ≃ ∧ id | ≃ ≃ | (universal property) ∨ | (B → X) ------------------------> (pushout f f → X) precomp (codiagonal f) ``` Since the top (in case `f` is epic), left and right maps are all equivalences, so is the bottom map. ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-truncation-equivalence-codiagonal-map-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → is-truncation-equivalence k (codiagonal-map f) is-truncation-equivalence-codiagonal-map-is-epimorphism-Truncated-Type e = is-truncation-equivalence-is-equiv-precomp k ( codiagonal-map f) ( λ l X → is-equiv-right-factor ( ( horizontal-map-cocone f f) ∘ ( map-equiv (equiv-up-pushout f f (type-Truncated-Type X)))) ( precomp (codiagonal-map f) (type-Truncated-Type X)) ( is-equiv-comp ( horizontal-map-cocone f f) ( map-equiv (equiv-up-pushout f f (type-Truncated-Type X))) ( is-equiv-map-equiv (equiv-up-pushout f f (type-Truncated-Type X))) ( is-equiv-horizontal-map-cocone-is-epimorphism-Truncated-Type ( k) ( f) ( e) ( X))) ( is-equiv-htpy ( id) ( λ g → eq-htpy (λ b → ap g (compute-inl-codiagonal-map f b))) ( is-equiv-id))) ``` ### A map is a `k`-epimorphism if its codiagonal is a `k`-equivalence We use the same diagram as above. ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-equiv-horizontal-map-cocone-is-truncation-equivalence-codiagonal-map : is-truncation-equivalence k (codiagonal-map f) → {l : Level} (X : Truncated-Type l k) → is-equiv (horizontal-map-cocone {X = type-Truncated-Type X} f f) is-equiv-horizontal-map-cocone-is-truncation-equivalence-codiagonal-map e X = is-equiv-left-factor ( horizontal-map-cocone f f) ( ( map-equiv (equiv-up-pushout f f (type-Truncated-Type X))) ∘ ( precomp (codiagonal-map f) (type-Truncated-Type X))) ( is-equiv-htpy ( id) ( λ g → eq-htpy (λ b → ap g (compute-inl-codiagonal-map f b))) ( is-equiv-id)) ( is-equiv-comp ( map-equiv (equiv-up-pushout f f (type-Truncated-Type X))) ( precomp (codiagonal-map f) (type-Truncated-Type X)) ( is-equiv-precomp-is-truncation-equivalence k (codiagonal-map f) e X) ( is-equiv-map-equiv (equiv-up-pushout f f (type-Truncated-Type X)))) is-epimorphism-is-truncation-equivalence-codiagonal-map-Truncated-Type : is-truncation-equivalence k (codiagonal-map f) → is-epimorphism-Truncated-Type k f is-epimorphism-is-truncation-equivalence-codiagonal-map-Truncated-Type e X = is-epimorphism-is-equiv-horizontal-map-cocone-Truncated-Type k f ( is-equiv-horizontal-map-cocone-is-truncation-equivalence-codiagonal-map ( e)) ( X) ``` ### A map is a `k`-epimorphism if and only if its codiagonal is `k`-connected This strengthens the above result about the codiagonal being a `k`-equivalence. ```agda module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-epimorphism-is-connected-codiagonal-map-Truncated-Type : is-connected-map k (codiagonal-map f) → is-epimorphism-Truncated-Type k f is-epimorphism-is-connected-codiagonal-map-Truncated-Type c = is-epimorphism-is-truncation-equivalence-codiagonal-map-Truncated-Type k f ( is-truncation-equivalence-is-connected-map (codiagonal-map f) c) is-connected-codiagonal-map-is-epimorphism-Truncated-Type : is-epimorphism-Truncated-Type k f → is-connected-map k (codiagonal-map f) is-connected-codiagonal-map-is-epimorphism-Truncated-Type e = is-connected-map-is-truncation-equivalence-section ( codiagonal-map f) ( k) ( inl-pushout f f , compute-inl-codiagonal-map f) ( is-truncation-equivalence-codiagonal-map-is-epimorphism-Truncated-Type ( k) ( f) ( e)) ``` ## See also - [Acyclic maps](synthetic-homotopy-theory.acyclic-maps.md) - [Dependent epimorphisms](foundation.dependent-epimorphisms.md) - [Epimorphisms](foundation.epimorphisms.md) - [Epimorphisms with respect to sets](foundation.epimorphisms-with-respect-to-sets.md)