# Functoriality of truncations

```agda
module foundation.functoriality-truncation where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.truncations
open import foundation.universe-levels
open import foundation.whiskering-homotopies-composition

open import foundation-core.commuting-squares-of-maps
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.homotopies
open import foundation-core.retractions
open import foundation-core.retracts-of-types
open import foundation-core.sections
open import foundation-core.truncation-levels
```

</details>

## Idea

The
[universal property of truncations](foundation.universal-property-truncation.md)
can be used to define the functorial action of
[truncations](foundation.truncations.md).

## Definition

```agda
module _
  {l1 l2 : Level} (k : ๐•‹) {A : UU l1} {B : UU l2} (f : A โ†’ B)
  where

  unique-map-trunc :
    is-contr
      ( ฮฃ ( type-trunc k A โ†’ type-trunc k B)
          ( coherence-square-maps f unit-trunc unit-trunc))
  unique-map-trunc =
    universal-property-trunc k A (trunc k B) (unit-trunc โˆ˜ f)

  map-trunc : type-trunc k A โ†’ type-trunc k B
  map-trunc = pr1 (center unique-map-trunc)

  coherence-square-map-trunc :
    coherence-square-maps f unit-trunc unit-trunc map-trunc
  coherence-square-map-trunc = pr2 (center unique-map-trunc)
```

## Properties

### Truncations of homotopic maps are homotopic

```agda
naturality-unit-trunc :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : ๐•‹) (f : A โ†’ B) โ†’
  map-trunc k f โˆ˜ unit-trunc ~ unit-trunc โˆ˜ f
naturality-unit-trunc k f = pr2 (center (unique-map-trunc k f))

htpy-uniqueness-map-trunc :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : ๐•‹) (f : A โ†’ B) โ†’
  (h : type-trunc k A โ†’ type-trunc k B) โ†’
  h โˆ˜ unit-trunc ~ unit-trunc โˆ˜ f โ†’ map-trunc k f ~ h
htpy-uniqueness-map-trunc k f h H =
  htpy-eq (ap pr1 (contraction (unique-map-trunc k f) (h , H)))

htpy-trunc :
  {l1 l2 : Level} {A : UU l1} {B : UU l2} {k : ๐•‹} {f g : A โ†’ B} โ†’
  f ~ g โ†’ map-trunc k f ~ map-trunc k g
htpy-trunc {k = k} {f} {g} H =
  htpy-uniqueness-map-trunc
    ( k)
    ( f)
    ( map-trunc k g)
    ( naturality-unit-trunc k g โˆ™h inv-htpy (unit-trunc ยทl H))
```

### The truncation of the identity map is the identity map

```agda
id-map-trunc : {l1 : Level} {A : UU l1} (k : ๐•‹) โ†’ map-trunc k (id {A = A}) ~ id
id-map-trunc k = htpy-uniqueness-map-trunc k id id refl-htpy
```

### The truncation of a composite is the composite of the truncations

```agda
preserves-comp-map-trunc :
  { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (k : ๐•‹)
  ( g : B โ†’ C) (f : A โ†’ B) โ†’
  ( map-trunc k (g โˆ˜ f)) ~
  ( (map-trunc k g) โˆ˜ (map-trunc k f))
preserves-comp-map-trunc k g f =
  htpy-uniqueness-map-trunc k
    ( g โˆ˜ f)
    ( map-trunc k g โˆ˜ map-trunc k f)
    ( ( map-trunc k g ยทl naturality-unit-trunc k f) โˆ™h
      ( naturality-unit-trunc k g ยทr f))
```

### The functorial action of truncations preserves equivalences

```agda
module _
  {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : ๐•‹) (e : A โ‰ƒ B)
  where

  map-equiv-trunc : type-trunc k A โ†’ type-trunc k B
  map-equiv-trunc = map-trunc k (map-equiv e)

  map-inv-equiv-trunc : type-trunc k B โ†’ type-trunc k A
  map-inv-equiv-trunc = map-trunc k (map-inv-equiv e)

  is-equiv-map-equiv-trunc : is-equiv map-equiv-trunc
  is-equiv-map-equiv-trunc =
    is-equiv-is-invertible
      ( map-inv-equiv-trunc)
      ( inv-htpy
        ( preserves-comp-map-trunc k (map-equiv e) (map-inv-equiv e)) โˆ™h
        ( htpy-trunc (is-section-map-inv-equiv e) โˆ™h id-map-trunc k))
      ( inv-htpy
        ( preserves-comp-map-trunc k (map-inv-equiv e) (map-equiv e)) โˆ™h
        ( htpy-trunc (is-retraction-map-inv-equiv e) โˆ™h id-map-trunc k))

  equiv-trunc : (type-trunc k A โ‰ƒ type-trunc k B)
  pr1 equiv-trunc = map-equiv-trunc
  pr2 equiv-trunc = is-equiv-map-equiv-trunc
```

### Truncations preserve retracts

```agda
module _
  {l1 l2 : Level} {k : ๐•‹} {A : UU l1} {B : UU l2}
  where

  section-map-trunc-section :
    (f : A โ†’ B) โ†’ section f โ†’ section (map-trunc k f)
  pr1 (section-map-trunc-section f S) =
    map-trunc k (map-section f S)
  pr2 (section-map-trunc-section f (s , h)) =
    homotopy-reasoning
      map-trunc k f โˆ˜ map-trunc k s
      ~ map-trunc k (f โˆ˜ s)
        by inv-htpy (preserves-comp-map-trunc k f s)
      ~ map-trunc k id
        by htpy-eq (ap (map-trunc k) (eq-htpy h))
      ~ id
        by id-map-trunc k

  retraction-map-trunc-retraction :
    (f : A โ†’ B) โ†’ retraction f โ†’ retraction (map-trunc k f)
  pr1 (retraction-map-trunc-retraction f S) =
    map-trunc k (map-retraction f S)
  pr2 (retraction-map-trunc-retraction f (r , h)) =
    homotopy-reasoning
      map-trunc k r โˆ˜ map-trunc k f
      ~ map-trunc k (r โˆ˜ f)
        by inv-htpy (preserves-comp-map-trunc k r f)
      ~ map-trunc k id
        by htpy-eq (ap (map-trunc k) (eq-htpy h))
      ~ id
        by id-map-trunc k

  retract-of-trunc-retract-of :
    A retract-of B โ†’ (type-trunc k A) retract-of (type-trunc k B)
  pr1 (retract-of-trunc-retract-of R) =
    map-trunc k (inclusion-retract R)
  pr2 (retract-of-trunc-retract-of R) =
    retraction-map-trunc-retraction
      ( inclusion-retract R)
      ( retraction-retract R)
```