# Functoriality of truncations ```agda module foundation.functoriality-truncation where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.truncations open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.retractions open import foundation-core.retracts-of-types open import foundation-core.sections open import foundation-core.truncation-levels ``` </details> ## Idea The [universal property of truncations](foundation.universal-property-truncation.md) can be used to define the functorial action of [truncations](foundation.truncations.md). ## Definition ```agda module _ {l1 l2 : Level} (k : ๐) {A : UU l1} {B : UU l2} (f : A โ B) where unique-map-trunc : is-contr ( ฮฃ ( type-trunc k A โ type-trunc k B) ( coherence-square-maps f unit-trunc unit-trunc)) unique-map-trunc = universal-property-trunc k A (trunc k B) (unit-trunc โ f) map-trunc : type-trunc k A โ type-trunc k B map-trunc = pr1 (center unique-map-trunc) coherence-square-map-trunc : coherence-square-maps f unit-trunc unit-trunc map-trunc coherence-square-map-trunc = pr2 (center unique-map-trunc) ``` ## Properties ### Truncations of homotopic maps are homotopic ```agda naturality-unit-trunc : {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : ๐) (f : A โ B) โ map-trunc k f โ unit-trunc ~ unit-trunc โ f naturality-unit-trunc k f = pr2 (center (unique-map-trunc k f)) htpy-uniqueness-map-trunc : {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : ๐) (f : A โ B) โ (h : type-trunc k A โ type-trunc k B) โ h โ unit-trunc ~ unit-trunc โ f โ map-trunc k f ~ h htpy-uniqueness-map-trunc k f h H = htpy-eq (ap pr1 (contraction (unique-map-trunc k f) (h , H))) htpy-trunc : {l1 l2 : Level} {A : UU l1} {B : UU l2} {k : ๐} {f g : A โ B} โ f ~ g โ map-trunc k f ~ map-trunc k g htpy-trunc {k = k} {f} {g} H = htpy-uniqueness-map-trunc ( k) ( f) ( map-trunc k g) ( naturality-unit-trunc k g โh inv-htpy (unit-trunc ยทl H)) ``` ### The truncation of the identity map is the identity map ```agda id-map-trunc : {l1 : Level} {A : UU l1} (k : ๐) โ map-trunc k (id {A = A}) ~ id id-map-trunc k = htpy-uniqueness-map-trunc k id id refl-htpy ``` ### The truncation of a composite is the composite of the truncations ```agda preserves-comp-map-trunc : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (k : ๐) ( g : B โ C) (f : A โ B) โ ( map-trunc k (g โ f)) ~ ( (map-trunc k g) โ (map-trunc k f)) preserves-comp-map-trunc k g f = htpy-uniqueness-map-trunc k ( g โ f) ( map-trunc k g โ map-trunc k f) ( ( map-trunc k g ยทl naturality-unit-trunc k f) โh ( naturality-unit-trunc k g ยทr f)) ``` ### The functorial action of truncations preserves equivalences ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : ๐) (e : A โ B) where map-equiv-trunc : type-trunc k A โ type-trunc k B map-equiv-trunc = map-trunc k (map-equiv e) map-inv-equiv-trunc : type-trunc k B โ type-trunc k A map-inv-equiv-trunc = map-trunc k (map-inv-equiv e) is-equiv-map-equiv-trunc : is-equiv map-equiv-trunc is-equiv-map-equiv-trunc = is-equiv-is-invertible ( map-inv-equiv-trunc) ( inv-htpy ( preserves-comp-map-trunc k (map-equiv e) (map-inv-equiv e)) โh ( htpy-trunc (is-section-map-inv-equiv e) โh id-map-trunc k)) ( inv-htpy ( preserves-comp-map-trunc k (map-inv-equiv e) (map-equiv e)) โh ( htpy-trunc (is-retraction-map-inv-equiv e) โh id-map-trunc k)) equiv-trunc : (type-trunc k A โ type-trunc k B) pr1 equiv-trunc = map-equiv-trunc pr2 equiv-trunc = is-equiv-map-equiv-trunc ``` ### Truncations preserve retracts ```agda module _ {l1 l2 : Level} {k : ๐} {A : UU l1} {B : UU l2} where section-map-trunc-section : (f : A โ B) โ section f โ section (map-trunc k f) pr1 (section-map-trunc-section f S) = map-trunc k (map-section f S) pr2 (section-map-trunc-section f (s , h)) = homotopy-reasoning map-trunc k f โ map-trunc k s ~ map-trunc k (f โ s) by inv-htpy (preserves-comp-map-trunc k f s) ~ map-trunc k id by htpy-eq (ap (map-trunc k) (eq-htpy h)) ~ id by id-map-trunc k retraction-map-trunc-retraction : (f : A โ B) โ retraction f โ retraction (map-trunc k f) pr1 (retraction-map-trunc-retraction f S) = map-trunc k (map-retraction f S) pr2 (retraction-map-trunc-retraction f (r , h)) = homotopy-reasoning map-trunc k r โ map-trunc k f ~ map-trunc k (r โ f) by inv-htpy (preserves-comp-map-trunc k r f) ~ map-trunc k id by htpy-eq (ap (map-trunc k) (eq-htpy h)) ~ id by id-map-trunc k retract-of-trunc-retract-of : A retract-of B โ (type-trunc k A) retract-of (type-trunc k B) pr1 (retract-of-trunc-retract-of R) = map-trunc k (inclusion-retract R) pr2 (retract-of-trunc-retract-of R) = retraction-map-trunc-retraction ( inclusion-retract R) ( retraction-retract R) ```