# Monomorphisms ```agda module foundation.monomorphisms where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.function-extensionality open import foundation.functoriality-function-types open import foundation.postcomposition-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.truncation-levels ``` </details> ## Idea A function `f : A → B` is a monomorphism if whenever we have two functions `g h : X → A` such that `f ∘ g = f ∘ h`, then in fact `g = h`. The way to state this in Homotopy Type Theory is to say that postcomposition by `f` is an embedding. ## Definition ```agda module _ {l1 l2 : Level} (l3 : Level) {A : UU l1} {B : UU l2} (f : A → B) where is-mono-Prop : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-mono-Prop = Π-Prop (UU l3) λ X → is-emb-Prop (postcomp X f) is-mono : UU (l1 ⊔ l2 ⊔ lsuc l3) is-mono = type-Prop is-mono-Prop is-prop-is-mono : is-prop is-mono is-prop-is-mono = is-prop-type-Prop is-mono-Prop ``` ## Properties If `f : A → B` is a monomorphism then for any `g h : X → A` we have an equivalence `(f ∘ g = f ∘ h) ≃ (g = h)`. In particular, if `f ∘ g = f ∘ h` then `g = h`. ```agda module _ {l1 l2 : Level} (l3 : Level) {A : UU l1} {B : UU l2} (f : A → B) (p : is-mono l3 f) {X : UU l3} (g h : X → A) where equiv-postcomp-is-mono : (g = h) ≃ ((f ∘ g) = (f ∘ h)) pr1 equiv-postcomp-is-mono = ap (f ∘_) pr2 equiv-postcomp-is-mono = p X g h is-injective-postcomp-is-mono : (f ∘ g) = (f ∘ h) → g = h is-injective-postcomp-is-mono = map-inv-equiv equiv-postcomp-is-mono ``` A function is a monomorphism if and only if it is an embedding. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-mono-is-emb : is-emb f → {l3 : Level} → is-mono l3 f is-mono-is-emb is-emb-f X = is-emb-is-prop-map ( is-trunc-map-postcomp-is-trunc-map neg-one-𝕋 f ( is-prop-map-is-emb is-emb-f) ( X)) is-emb-is-mono : ({l3 : Level} → is-mono l3 f) → is-emb f is-emb-is-mono is-mono-f = is-emb-is-prop-map ( is-trunc-map-is-trunc-map-postcomp neg-one-𝕋 f ( λ X → is-prop-map-is-emb (is-mono-f X))) ``` We construct an explicit equivalence for postcomposition for homotopies between functions (rather than equality) when the map is an embedding. ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A ↪ B) {X : UU l3} (g h : X → A) where map-inv-equiv-htpy-postcomp-is-emb : (pr1 f ∘ g) ~ (pr1 f ∘ h) → g ~ h map-inv-equiv-htpy-postcomp-is-emb H x = map-inv-is-equiv (pr2 f (g x) (h x)) (H x) is-section-map-inv-equiv-htpy-postcomp-is-emb : (pr1 f ·l_) ∘ map-inv-equiv-htpy-postcomp-is-emb ~ id is-section-map-inv-equiv-htpy-postcomp-is-emb H = eq-htpy (λ x → is-section-map-inv-is-equiv (pr2 f (g x) (h x)) (H x)) is-retraction-map-inv-equiv-htpy-postcomp-is-emb : map-inv-equiv-htpy-postcomp-is-emb ∘ (pr1 f ·l_) ~ id is-retraction-map-inv-equiv-htpy-postcomp-is-emb H = eq-htpy (λ x → is-retraction-map-inv-is-equiv (pr2 f (g x) (h x)) (H x)) equiv-htpy-postcomp-is-emb : (g ~ h) ≃ ((pr1 f ∘ g) ~ (pr1 f ∘ h)) pr1 equiv-htpy-postcomp-is-emb = pr1 f ·l_ pr2 equiv-htpy-postcomp-is-emb = is-equiv-is-invertible map-inv-equiv-htpy-postcomp-is-emb is-section-map-inv-equiv-htpy-postcomp-is-emb is-retraction-map-inv-equiv-htpy-postcomp-is-emb ```