# Postcomposition of functions ```agda module foundation.postcomposition-functions where open import foundation-core.postcomposition-functions public ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.postcomposition-dependent-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.commuting-triangles-of-maps open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.type-theoretic-principle-of-choice ``` </details> ## Idea Given a map `f : X → Y` and a type `A`, the {{#concept "postcomposition function"}} ```text f ∘ - : (A → X) → (A → Y) ``` is defined by `λ h x → f (h x)`. ## Properties ### Postcomposition preserves homotopies ```agda htpy-postcomp : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (A : UU l3) → {f g : X → Y} → (f ~ g) → postcomp A f ~ postcomp A g htpy-postcomp A H h = eq-htpy (H ·r h) compute-htpy-postcomp-refl-htpy : {l1 l2 l3 : Level} (A : UU l1) {B : UU l2} {C : UU l3} (f : B → C) → (htpy-postcomp A (refl-htpy' f)) ~ refl-htpy compute-htpy-postcomp-refl-htpy A f h = eq-htpy-refl-htpy (f ∘ h) ``` ### Computations of the fibers of `postcomp` We give three computations of the fibers of a postcomposition function: 1. `fiber (postcomp A f) h ≃ ((x : A) → fiber f (h x))` 2. `fiber (postcomp A f) h ≃ Σ (A → X) (coherence-triangle-maps h f)`, and 3. `fiber (postcomp A f) (f ∘ h) ≃ Σ (A → X) (λ g → coherence-square-maps g h f f)` ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (A : UU l3) (f : X → Y) where inv-compute-Π-fiber-postcomp : (h : A → Y) → fiber (postcomp A f) h ≃ ((x : A) → fiber f (h x)) inv-compute-Π-fiber-postcomp h = inv-distributive-Π-Σ ∘e equiv-tot (λ _ → equiv-funext) compute-Π-fiber-postcomp : (h : A → Y) → ((x : A) → fiber f (h x)) ≃ fiber (postcomp A f) h compute-Π-fiber-postcomp h = equiv-tot (λ _ → equiv-eq-htpy) ∘e distributive-Π-Σ inv-compute-coherence-triangle-fiber-postcomp : (h : A → Y) → fiber (postcomp A f) h ≃ Σ (A → X) (coherence-triangle-maps h f) inv-compute-coherence-triangle-fiber-postcomp h = equiv-tot (λ _ → equiv-funext) ∘e equiv-fiber (postcomp A f) h compute-coherence-triangle-fiber-postcomp : (h : A → Y) → Σ (A → X) (coherence-triangle-maps h f) ≃ fiber (postcomp A f) h compute-coherence-triangle-fiber-postcomp h = inv-equiv (inv-compute-coherence-triangle-fiber-postcomp h) inv-compute-fiber-postcomp : (h : A → X) → fiber (postcomp A f) (f ∘ h) ≃ Σ (A → X) (λ g → coherence-square-maps g h f f) inv-compute-fiber-postcomp h = inv-compute-coherence-triangle-fiber-postcomp (f ∘ h) compute-fiber-postcomp : (h : A → X) → Σ (A → X) (λ g → coherence-square-maps g h f f) ≃ fiber (postcomp A f) (f ∘ h) compute-fiber-postcomp h = compute-coherence-triangle-fiber-postcomp (f ∘ h) ``` ### Postcomposition and equivalences #### A map `f` is an equivalence if and only if postcomposing by `f` is an equivalence ```agda module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) (H : {l3 : Level} (A : UU l3) → is-equiv (postcomp A f)) where map-inv-is-equiv-is-equiv-postcomp : Y → X map-inv-is-equiv-is-equiv-postcomp = map-inv-is-equiv (H Y) id is-section-map-inv-is-equiv-is-equiv-postcomp : ( f ∘ map-inv-is-equiv-is-equiv-postcomp) ~ id is-section-map-inv-is-equiv-is-equiv-postcomp = htpy-eq (is-section-map-inv-is-equiv (H Y) id) is-retraction-map-inv-is-equiv-is-equiv-postcomp : ( map-inv-is-equiv-is-equiv-postcomp ∘ f) ~ id is-retraction-map-inv-is-equiv-is-equiv-postcomp = htpy-eq ( ap ( pr1) ( eq-is-contr ( is-contr-map-is-equiv (H X) f) { x = ( map-inv-is-equiv-is-equiv-postcomp ∘ f) , ( ap (_∘ f) (is-section-map-inv-is-equiv (H Y) id))} { y = id , refl})) abstract is-equiv-is-equiv-postcomp : is-equiv f is-equiv-is-equiv-postcomp = is-equiv-is-invertible map-inv-is-equiv-is-equiv-postcomp is-section-map-inv-is-equiv-is-equiv-postcomp is-retraction-map-inv-is-equiv-is-equiv-postcomp ``` The following version of the same theorem works when `X` and `Y` are in the same universe. The condition of inducing equivalences by postcomposition is simplified to that universe. ```agda is-equiv-is-equiv-postcomp' : {l : Level} {X : UU l} {Y : UU l} (f : X → Y) → ((A : UU l) → is-equiv (postcomp A f)) → is-equiv f is-equiv-is-equiv-postcomp' {l} {X} {Y} f is-equiv-postcomp-f = let section-f = center (is-contr-map-is-equiv (is-equiv-postcomp-f Y) id) in is-equiv-is-invertible ( pr1 section-f) ( htpy-eq (pr2 section-f)) ( htpy-eq ( ap ( pr1) ( eq-is-contr' ( is-contr-map-is-equiv (is-equiv-postcomp-f X) f) ( pr1 section-f ∘ f , ap (_∘ f) (pr2 section-f)) ( id , refl)))) abstract is-equiv-postcomp-is-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) → is-equiv f → {l3 : Level} (A : UU l3) → is-equiv (postcomp A f) is-equiv-postcomp-is-equiv {X = X} {Y = Y} f is-equiv-f A = is-equiv-is-invertible ( postcomp A (map-inv-is-equiv is-equiv-f)) ( eq-htpy ∘ right-whisker-comp (is-section-map-inv-is-equiv is-equiv-f)) ( eq-htpy ∘ right-whisker-comp (is-retraction-map-inv-is-equiv is-equiv-f)) is-equiv-postcomp-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X ≃ Y) → {l3 : Level} (A : UU l3) → is-equiv (postcomp A (map-equiv f)) is-equiv-postcomp-equiv f = is-equiv-postcomp-is-equiv (map-equiv f) (is-equiv-map-equiv f) equiv-postcomp : {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (A : UU l3) → (X ≃ Y) → (A → X) ≃ (A → Y) pr1 (equiv-postcomp A e) = postcomp A (map-equiv e) pr2 (equiv-postcomp A e) = is-equiv-postcomp-is-equiv (map-equiv e) (is-equiv-map-equiv e) A ``` ### Two maps being homotopic is equivalent to them being homotopic after pre- or postcomposition by an equivalence ```agda module _ { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} where equiv-htpy-postcomp-htpy : (e : B ≃ C) (f g : A → B) → (f ~ g) ≃ (map-equiv e ∘ f ~ map-equiv e ∘ g) equiv-htpy-postcomp-htpy e f g = equiv-Π-equiv-family (λ a → equiv-ap e (f a) (g a)) ``` ### Computing the action on identifications of postcomposition by a map Consider a map `f : B → C` and two functions `g h : A → B`. Then the [action on identifications](foundation.action-on-identifications-functions.md) `ap (postcomp A f)` fits in a [commuting square](foundation-core.commuting-squares-of-maps.md) ```text ap (postcomp A f) (g = h) --------------------------> (f ∘ g = f ∘ h) | | htpy-eq | | htpy-eq ∨ ∨ (g ~ h) --------------------------> (f ∘ g ~ f ∘ h). f ·l_ ``` Similarly, the action on identifications `ap (postcomp A f)` also fits in a commuting square ```text f ·l_ (g ~ h) --------------------------> (f ∘ g ~ f ∘ h) | | eq-htpy | | eq-htpy ∨ ∨ (g = h) --------------------------> (f ∘ g = f ∘ h). ap (postcomp A f) ``` ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {g h : A → B} (f : B → C) where compute-htpy-eq-ap-postcomp : coherence-square-maps ( ap (postcomp A f) {x = g} {y = h}) ( htpy-eq) ( htpy-eq) ( f ·l_) compute-htpy-eq-ap-postcomp = compute-htpy-eq-ap-postcomp-Π f compute-eq-htpy-ap-postcomp : coherence-square-maps ( f ·l_) ( eq-htpy) ( eq-htpy) ( ap (postcomp A f) {x = g} {y = h}) compute-eq-htpy-ap-postcomp = compute-eq-htpy-ap-postcomp-Π f ```