# Multivariable decidable relations ```agda module foundation.multivariable-decidable-relations where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.decidable-subtypes open import foundation.multivariable-correspondences open import foundation.multivariable-relations open import foundation.universe-levels open import univalent-combinatorics.standard-finite-types ``` </details> ## Idea Consider a family of types `A i` indexed by `i : Fin n`. An `n`-ary decidable relation on the tuples of elements of the `A i` is a decidable subtype of the product of the `A i`. ## Definition ```agda multivariable-decidable-relation : {l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2) multivariable-decidable-relation l2 n A = decidable-subtype l2 ((i : Fin n) → A i) module _ {l1 l2 : Level} {n : ℕ} {A : Fin n → UU l1} (R : multivariable-decidable-relation l2 n A) where multivariable-relation-multivariable-decidable-relation : multivariable-relation l2 n A multivariable-relation-multivariable-decidable-relation = subtype-decidable-subtype R multivariable-correspondence-multivariable-decidable-relation : multivariable-correspondence l2 n A multivariable-correspondence-multivariable-decidable-relation = is-in-decidable-subtype R ```