# Multivariable relations ```agda module foundation.multivariable-relations where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.multivariable-correspondences open import foundation.universe-levels open import foundation-core.subtypes open import univalent-combinatorics.standard-finite-types ``` </details> ## Idea A `n`-ary relation on a type `A` is a subtype of `Fin n → A`. ## Definition ```agda multivariable-relation : {l1 : Level} (l2 : Level) (n : ℕ) (A : Fin n → UU l1) → UU (l1 ⊔ lsuc l2) multivariable-relation l2 n A = subtype l2 ((i : Fin n) → A i) module _ {l1 l2 : Level} {n : ℕ} {A : Fin n → UU l1} (R : multivariable-relation l2 n A) where multivariable-correspondence-multivariable-relation : multivariable-correspondence l2 n A multivariable-correspondence-multivariable-relation = is-in-subtype R ```