# Perfect images ```agda module foundation.perfect-images where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.double-negation open import foundation.iterated-dependent-product-types open import foundation.iterating-functions open import foundation.law-of-excluded-middle open import foundation.negated-equality open import foundation.negation open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.coproduct-types open import foundation-core.embeddings open import foundation-core.empty-types open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.transport-along-identifications ``` </details> ## Idea Consider two maps `f : A → B` and `g : B → A`. For `(g ◦ f)ⁿ(a₀) = a`, consider also the following chain ```text f g f g g a₀ --> f (a₀) --> g(f(a₀)) --> f(g(f(a₀))) --> ... --> (g ◦ f)ⁿ(a₀) = a ``` We say `a₀` is an {{#concept "origin"}} for `a`, and `a` is a {{#concept "perfect image" Agda=is-perfect-image}} for `g` if any origin of `a` is in the [image](foundation.images.md) of `g`. ## Definition ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) (g : B → A) where is-perfect-image : (a : A) → UU (l1 ⊔ l2) is-perfect-image a = (a₀ : A) (n : ℕ) → (iterate n (g ∘ f)) a₀ = a → fiber g a₀ ``` ## Properties If `g` is an [embedding](foundation-core.embeddings.md), then `is-perfect-image a` is a [proposition](foundation-core.propositions.md). In this case, if we assume the [law of exluded middle](foundation.law-of-excluded-middle.md), we can show `is-perfect-image a` is a [decidable type](foundation.decidable-types.md) for any `a : A`. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} (is-emb-g : is-emb g) where is-prop-is-perfect-image-is-emb : (a : A) → is-prop (is-perfect-image f g a) is-prop-is-perfect-image-is-emb a = is-prop-iterated-Π 3 (λ a₀ n p → is-prop-map-is-emb is-emb-g a₀) is-perfect-image-Prop : A → Prop (l1 ⊔ l2) pr1 (is-perfect-image-Prop a) = is-perfect-image f g a pr2 (is-perfect-image-Prop a) = is-prop-is-perfect-image-is-emb a is-decidable-is-perfect-image-is-emb : LEM (l1 ⊔ l2) → (a : A) → is-decidable (is-perfect-image f g a) is-decidable-is-perfect-image-is-emb lem a = lem (is-perfect-image-Prop a) ``` If `a` is a perfect image for `g`, then `a` has a preimage under `g`. Just take `n = zero` in the definition. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-perfect-image-is-fiber : {f : A → B} {g : B → A} → (a : A) → is-perfect-image f g a → fiber g a is-perfect-image-is-fiber a ρ = ρ a 0 refl ``` One can define a map from `A` to `B` restricting the domain to the perfect images of `g`. This gives a kind of [section](foundation-core.sections.md) of g. When g is also an embedding, the map gives a kind of [retraction](foundation-core.retractions.md) of g. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} where inverse-of-perfect-image : (a : A) → (is-perfect-image f g a) → B inverse-of-perfect-image a ρ = pr1 (is-perfect-image-is-fiber a ρ) is-section-inverse-of-perfect-image : (a : A) (ρ : is-perfect-image f g a) → g (inverse-of-perfect-image a ρ) = a is-section-inverse-of-perfect-image a ρ = pr2 (is-perfect-image-is-fiber a ρ) ``` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} {is-emb-g : is-emb g} where is-retraction-inverse-of-perfect-image : (b : B) (ρ : is-perfect-image f g (g b)) → inverse-of-perfect-image (g b) ρ = b is-retraction-inverse-of-perfect-image b ρ = is-injective-is-emb is-emb-g (is-section-inverse-of-perfect-image (g b) ρ) ``` If `g(f(a))` is a perfect image for `g`, so is `a`. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} where previous-perfect-image : (a : A) → is-perfect-image f g (g (f (a))) → is-perfect-image f g a previous-perfect-image a γ a₀ n p = γ a₀ (succ-ℕ n) (ap (g ∘ f) p) ``` Perfect images goes to a disjoint place under `inverse-of-perfect-image` than `f` ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} where perfect-image-has-distinct-image : (a a₀ : A) → ¬ (is-perfect-image f g a) → (ρ : is-perfect-image f g a₀) → f a ≠ inverse-of-perfect-image a₀ ρ perfect-image-has-distinct-image a a₀ nρ ρ p = v ρ where q : g (f a) = a₀ q = ap g p ∙ is-section-inverse-of-perfect-image a₀ ρ s : ¬ (is-perfect-image f g (g (f a))) s = λ η → nρ (previous-perfect-image a η) v : ¬ (is-perfect-image f g a₀) v = tr (λ _ → ¬ (is-perfect-image f g _)) q s ``` Using the property above, we can talk about origins of `a` which are not images of `g`. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} where is-not-perfect-image : (a : A) → UU (l1 ⊔ l2) is-not-perfect-image a = Σ A (λ a₀ → (Σ ℕ (λ n → ((iterate n (g ∘ f)) a₀ = a) × ¬ (fiber g a₀)))) ``` If we assume the law of excluded middle and `g` is an embedding, we can prove that if `is-not-perfect-image a` does not hold, we have `is-perfect-image a`. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} (is-emb-g : is-emb g) (lem : LEM (l1 ⊔ l2)) where is-perfect-not-not-is-perfect-image : (a : A) → ¬ (is-not-perfect-image a) → is-perfect-image f g a is-perfect-not-not-is-perfect-image a nρ a₀ n p = rec-coproduct ( id) ( λ a₁ → ex-falso (nρ (a₀ , n , p , a₁))) ( lem (fiber g a₀ , is-prop-map-is-emb is-emb-g a₀)) ``` The following property states that if `g (b)` is not a perfect image, then `b` has an `f` fiber `a` that is not a perfect image for `g`. Again, we need to assume law of excluded middle and that both `g` and `f` are embedding. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B} {g : B → A} (is-emb-f : is-emb f) (is-emb-g : is-emb g) (lem : LEM (l1 ⊔ l2)) where not-perfect-image-has-not-perfect-fiber : (b : B) → ¬ (is-perfect-image f g (g b)) → Σ (fiber f b) (λ s → ¬ (is-perfect-image f g (pr1 s))) not-perfect-image-has-not-perfect-fiber b nρ = v where i : ¬¬ (is-not-perfect-image {f = f} (g b)) i = λ nμ → nρ (is-perfect-not-not-is-perfect-image is-emb-g lem (g b) nμ) ii : is-not-perfect-image (g b) → Σ (fiber f b) (λ s → ¬ (is-perfect-image f g (pr1 s))) ii (x₀ , 0 , u) = ex-falso (pr2 u (b , inv (pr1 u))) ii (x₀ , succ-ℕ n , u) = a , w where q : f (iterate n (g ∘ f) x₀) = b q = is-injective-is-emb is-emb-g (pr1 u) a : fiber f b a = iterate n (g ∘ f) x₀ , q w : ¬ (is-perfect-image f g ((iterate n (g ∘ f)) x₀)) w = λ s → pr2 u (s x₀ n refl) iii : ¬¬ (Σ (fiber f b) (λ s → ¬ (is-perfect-image f g (pr1 s)))) iii = λ t → i (λ s → t (ii s)) iv : is-prop (Σ (fiber f b) (λ s → ¬ (is-perfect-image f g (pr1 s)))) iv = is-prop-Σ (is-prop-map-is-emb is-emb-f b) (λ s → is-prop-neg {A = is-perfect-image f g (pr1 s)}) v : Σ (fiber f b) (λ s → ¬ (is-perfect-image f g (pr1 s))) v = double-negation-elim-is-decidable (lem (_ , iv)) iii ```