# Unions of subtypes ```agda module foundation.unions-subtypes where ``` <details><summary>Imports</summary> ```agda open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.large-locale-of-subtypes open import foundation.powersets open import foundation.propositional-truncations open import foundation.universe-levels open import foundation-core.subtypes open import order-theory.least-upper-bounds-large-posets ``` </details> ## Idea The **union** of two [subtypes](foundation-core.subtypes.md) `A` and `B` is the subtype that contains the elements that are in `A` or in `B`. ## Definition ### Unions of subtypes ```agda module _ {l l1 l2 : Level} {X : UU l} where union-subtype : subtype l1 X → subtype l2 X → subtype (l1 ⊔ l2) X union-subtype P Q x = (P x) ∨ (Q x) ``` ### Unions of decidable subtypes ```agda union-decidable-subtype : decidable-subtype l1 X → decidable-subtype l2 X → decidable-subtype (l1 ⊔ l2) X union-decidable-subtype P Q x = disjunction-Decidable-Prop (P x) (Q x) ``` ### Unions of families of subtypes ```agda module _ {l1 l2 l3 : Level} {X : UU l1} where union-family-of-subtypes : {I : UU l2} (A : I → subtype l3 X) → subtype (l2 ⊔ l3) X union-family-of-subtypes = sup-powerset-Large-Locale is-least-upper-bound-union-family-of-subtypes : {I : UU l2} (A : I → subtype l3 X) → is-least-upper-bound-family-of-elements-Large-Poset ( powerset-Large-Poset X) ( A) ( union-family-of-subtypes A) is-least-upper-bound-union-family-of-subtypes = is-least-upper-bound-sup-powerset-Large-Locale ``` ## Properties ### The union of families of subtypes preserves indexed inclusion ```agda module _ {l1 l2 l3 l4 : Level} {X : UU l1} {I : UU l2} (A : I → subtype l3 X) (B : I → subtype l4 X) where preserves-order-union-family-of-subtypes : ((i : I) → A i ⊆ B i) → union-family-of-subtypes A ⊆ union-family-of-subtypes B preserves-order-union-family-of-subtypes H x p = apply-universal-property-trunc-Prop p ( union-family-of-subtypes B x) ( λ (i , q) → unit-trunc-Prop (i , H i x q)) ```