# Greatest lower bounds in large posets ```agda module order-theory.greatest-lower-bounds-large-posets where ``` <details><summary>Imports</summary> ```agda open import foundation.logical-equivalences open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets open import order-theory.lower-bounds-large-posets ``` </details> ## Idea A **greatest binary lower bound** of two elements `a` and `b` in a large poset `P` is an element `x` such that for every element `y` in `P` the logical equivalence ```text is-binary-lower-bound-Large-Poset P a b y ↔ y ≤ x ``` holds. ## Definitions ### The predicate that an element of a large poset is the greatest lower bound of two elements ```agda module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) {l1 l2 : Level} (a : type-Large-Poset P l1) (b : type-Large-Poset P l2) where is-greatest-binary-lower-bound-Large-Poset : {l3 : Level} → type-Large-Poset P l3 → UUω is-greatest-binary-lower-bound-Large-Poset x = {l4 : Level} (y : type-Large-Poset P l4) → is-binary-lower-bound-Large-Poset P a b y ↔ leq-Large-Poset P y x ``` ## Properties ### Any pointwise greatest lower bound of two elements in a dependent product of large posets is a greatest lower bound ```agda module _ {α : Level → Level} {β : Level → Level → Level} {l : Level} {I : UU l} (P : I → Large-Poset α β) {l1 l2 l3 : Level} (x : type-Π-Large-Poset P l1) (y : type-Π-Large-Poset P l2) (z : type-Π-Large-Poset P l3) where is-greatest-binary-lower-bound-Π-Large-Poset : ( (i : I) → is-greatest-binary-lower-bound-Large-Poset (P i) (x i) (y i) (z i)) → is-greatest-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y z is-greatest-binary-lower-bound-Π-Large-Poset H u = logical-equivalence-reasoning is-binary-lower-bound-Large-Poset (Π-Large-Poset P) x y u ↔ ((i : I) → is-binary-lower-bound-Large-Poset (P i) (x i) (y i) (u i)) by inv-iff ( logical-equivalence-is-binary-lower-bound-Π-Large-Poset P x y u) ↔ leq-Π-Large-Poset P u z by iff-Π-iff-family (λ i → H i (u i)) ```