# Isomorphism induction in categories ```agda module category-theory.isomorphism-induction-categories where ``` <details><summary>Imports</summary> ```agda open import category-theory.categories open import category-theory.isomorphism-induction-precategories open import category-theory.isomorphisms-in-categories open import foundation.commuting-triangles-of-maps open import foundation.contractible-maps open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.sections open import foundation.universal-property-identity-systems open import foundation.universe-levels ``` </details> ## Idea **Isomorphism induction** in a [category](category-theory.categories.md) `𝒞` is the principle asserting that, given an object `A : 𝒞` and any type family ```text P : (B : 𝒞) (ϕ : A ≅ B) → 𝒰 ``` of types indexed by all [isomorphisms](category-theory.isomorphisms-in-categories.md) with domain `A`, there is a [section](foundation.sections.md) of the evaluation map ```text ((B : 𝒞) (ϕ : A ≅ B) → P B ϕ) → P A id-iso. ``` The principle of isomorphism induction is equivalent to the univalence axiom for categories. ## Statement ```agda module _ {l1 l2 : Level} (C : Category l1 l2) {A : obj-Category C} where ev-id-iso-Category : {l : Level} (P : (B : obj-Category C) → (iso-Category C A B) → UU l) → ((B : obj-Category C) (e : iso-Category C A B) → P B e) → P A (id-iso-Category C) ev-id-iso-Category = ev-id-iso-Precategory (precategory-Category C) induction-principle-iso-Category : {l : Level} (P : (B : obj-Category C) (e : iso-Category C A B) → UU l) → UU (l1 ⊔ l2 ⊔ l) induction-principle-iso-Category = induction-principle-iso-Precategory (precategory-Category C) triangle-ev-id-iso-Category : {l : Level} (P : (B : obj-Category C) → iso-Category C A B → UU l) → coherence-triangle-maps ( ev-point (A , id-iso-Category C)) ( ev-id-iso-Category P) ( ev-pair) triangle-ev-id-iso-Category = triangle-ev-id-iso-Precategory (precategory-Category C) ``` ## Properties ### Isomorphism induction in a category ```agda module _ {l1 l2 l3 : Level} (C : Category l1 l2) {A : obj-Category C} (P : (B : obj-Category C) (e : iso-Category C A B) → UU l3) where abstract is-identity-system-iso-Category : section (ev-id-iso-Category C P) is-identity-system-iso-Category = is-identity-system-is-torsorial-iso-Precategory ( precategory-Category C) ( is-torsorial-iso-Category C A) ( P) ind-iso-Category : P A (id-iso-Category C) → {B : obj-Category C} (e : iso-Category C A B) → P B e ind-iso-Category p {B} = pr1 is-identity-system-iso-Category p B compute-ind-iso-Category : (u : P A (id-iso-Category C)) → ind-iso-Category u (id-iso-Category C) = u compute-ind-iso-Category = pr2 is-identity-system-iso-Category ``` ### The evaluation map `ev-id-iso-Category` is an equivalence ```agda module _ {l1 l2 l3 : Level} (C : Category l1 l2) {A : obj-Category C} (P : (B : obj-Category C) (e : iso-Category C A B) → UU l3) where is-equiv-ev-id-iso-Category : is-equiv (ev-id-iso-Category C P) is-equiv-ev-id-iso-Category = dependent-universal-property-identity-system-is-torsorial ( id-iso-Category C) ( is-torsorial-iso-Category C A) ( P) is-contr-map-ev-id-iso-Category : is-contr-map (ev-id-iso-Category C P) is-contr-map-ev-id-iso-Category = is-contr-map-is-equiv is-equiv-ev-id-iso-Category ```