# The positive integers

```agda
module elementary-number-theory.positive-integers where
```

<details><summary>Imports</summary>

```agda
open import elementary-number-theory.integers
open import elementary-number-theory.natural-numbers
open import elementary-number-theory.nonzero-integers

open import foundation.action-on-identifications-functions
open import foundation.coproduct-types
open import foundation.decidable-subtypes
open import foundation.decidable-types
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.retractions
open import foundation.sections
open import foundation.sets
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.unit-type
open import foundation.universe-levels
```

</details>

## Idea

The [integers](elementary-number-theory.integers.md) are defined as a
[disjoint sum](foundation-core.coproduct-types.md) of three components. A single
element component containing the integer _zero_, and two copies of the
[natural numbers](elementary-number-theory.natural-numbers.md), one copy for the
[negative integers](elementary-number-theory.negative-integers.md) and one copy
for the _positive integers_. Arranged on a number line, we have

```text
  ⋯  -4  -3  -2  -1   0   1   2   3   4   ⋯
  <---+---+---+---]   |   [---+---+---+--->
```

We say an integer is
{{#concept "positive" Disambiguation="integer" Agda=is-positive-ℤ}} if it is an
element of the positive component of the integers.

## Definitions

### Positive integers

```agda
is-positive-ℤ :   UU lzero
is-positive-ℤ (inl x) = empty
is-positive-ℤ (inr (inl x)) = empty
is-positive-ℤ (inr (inr x)) = unit

is-prop-is-positive-ℤ : (x : )  is-prop (is-positive-ℤ x)
is-prop-is-positive-ℤ (inl x) = is-prop-empty
is-prop-is-positive-ℤ (inr (inl x)) = is-prop-empty
is-prop-is-positive-ℤ (inr (inr x)) = is-prop-unit

subtype-positive-ℤ : subtype lzero 
subtype-positive-ℤ x = (is-positive-ℤ x , is-prop-is-positive-ℤ x)

positive-ℤ : UU lzero
positive-ℤ = type-subtype subtype-positive-ℤ

is-positive-eq-ℤ : {x y : }  x  y  is-positive-ℤ x  is-positive-ℤ y
is-positive-eq-ℤ = tr is-positive-ℤ

module _
  (p : positive-ℤ)
  where

  int-positive-ℤ : 
  int-positive-ℤ = pr1 p

  is-positive-int-positive-ℤ : is-positive-ℤ int-positive-ℤ
  is-positive-int-positive-ℤ = pr2 p
```

### Positive constants

```agda
one-positive-ℤ : positive-ℤ
one-positive-ℤ = (one-ℤ , star)
```

## Properties

### Positivity is decidable

```agda
is-decidable-is-positive-ℤ : is-decidable-fam is-positive-ℤ
is-decidable-is-positive-ℤ (inl x) = inr id
is-decidable-is-positive-ℤ (inr (inl x)) = inr id
is-decidable-is-positive-ℤ (inr (inr x)) = inl star

decidable-subtype-positive-ℤ : decidable-subtype lzero 
decidable-subtype-positive-ℤ x =
  ( is-positive-ℤ x ,
    is-prop-is-positive-ℤ x ,
    is-decidable-is-positive-ℤ x)
```

### Positive integers are nonzero

```agda
is-nonzero-is-positive-ℤ : {x : }  is-positive-ℤ x  is-nonzero-ℤ x
is-nonzero-is-positive-ℤ {inr (inr x)} H ()
```

### The positive integers form a set

```agda
is-set-positive-ℤ : is-set positive-ℤ
is-set-positive-ℤ =
  is-set-type-subtype subtype-positive-ℤ is-set-ℤ
```

### The successor of a positive integer is positive

```agda
is-positive-succ-is-positive-ℤ :
  {x : }  is-positive-ℤ x  is-positive-ℤ (succ-ℤ x)
is-positive-succ-is-positive-ℤ {inr (inr x)} H = H

succ-positive-ℤ : positive-ℤ  positive-ℤ
succ-positive-ℤ (x , H) = (succ-ℤ x , is-positive-succ-is-positive-ℤ H)
```

### The integer image of a nonzero natural number is positive

```agda
is-positive-int-is-nonzero-ℕ :
  (x : )  is-nonzero-ℕ x  is-positive-ℤ (int-ℕ x)
is-positive-int-is-nonzero-ℕ zero-ℕ H = ex-falso (H refl)
is-positive-int-is-nonzero-ℕ (succ-ℕ x) H = star
```

### The canonical equivalence between natural numbers and positive integers

```agda
positive-int-ℕ :   positive-ℤ
positive-int-ℕ = rec-ℕ one-positive-ℤ  _  succ-positive-ℤ)

nat-positive-ℤ : positive-ℤ  
nat-positive-ℤ (inr (inr x) , H) = x

eq-nat-positive-succ-positive-ℤ :
  (x : positive-ℤ) 
  nat-positive-ℤ (succ-positive-ℤ x)  succ-ℕ (nat-positive-ℤ x)
eq-nat-positive-succ-positive-ℤ (inr (inr x) , H) = refl

is-section-nat-positive-ℤ :
  (x : positive-ℤ)  positive-int-ℕ (nat-positive-ℤ x)  x
is-section-nat-positive-ℤ (inr (inr zero-ℕ) , H) = refl
is-section-nat-positive-ℤ (inr (inr (succ-ℕ x)) , H) =
  ap succ-positive-ℤ (is-section-nat-positive-ℤ ( inr (inr x) , H))

is-retraction-nat-positive-ℤ :
  (n : )  nat-positive-ℤ (positive-int-ℕ n)  n
is-retraction-nat-positive-ℤ zero-ℕ = refl
is-retraction-nat-positive-ℤ (succ-ℕ n) =
  eq-nat-positive-succ-positive-ℤ (positive-int-ℕ n) 
  ap succ-ℕ (is-retraction-nat-positive-ℤ n)

is-equiv-positive-int-ℕ : is-equiv positive-int-ℕ
pr1 (pr1 is-equiv-positive-int-ℕ) = nat-positive-ℤ
pr2 (pr1 is-equiv-positive-int-ℕ) = is-section-nat-positive-ℤ
pr1 (pr2 is-equiv-positive-int-ℕ) = nat-positive-ℤ
pr2 (pr2 is-equiv-positive-int-ℕ) = is-retraction-nat-positive-ℤ

equiv-positive-int-ℕ :   positive-ℤ
pr1 equiv-positive-int-ℕ = positive-int-ℕ
pr2 equiv-positive-int-ℕ = is-equiv-positive-int-ℕ
```

## See also

- The relations between positive and nonnegative, negative and nonnpositive
  integers are derived in
  [`positive-and-negative-integers`](elementary-number-theory.positive-and-negative-integers.md)