# Cantor's diagonal argument ```agda module foundation.cantors-diagonal-argument where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.logical-equivalences open import foundation.negation open import foundation.propositional-truncations open import foundation.surjective-maps open import foundation.universe-levels open import foundation-core.empty-types open import foundation-core.fibers-of-maps open import foundation-core.propositions ``` </details> ## Idea Cantor's diagonal argument is used to show that there is no surjective map from a type into the type of its subtypes. ## Theorem ```agda map-cantor : {l1 l2 : Level} (X : UU l1) (f : X → (X → Prop l2)) → (X → Prop l2) map-cantor X f x = neg-Prop (f x x) abstract not-in-image-map-cantor : {l1 l2 : Level} (X : UU l1) (f : X → (X → Prop l2)) → ( t : fiber f (map-cantor X f)) → empty not-in-image-map-cantor X f (pair x α) = no-fixed-points-neg-Prop (f x x) (iff-eq (htpy-eq α x)) abstract cantor : {l1 l2 : Level} (X : UU l1) (f : X → X → Prop l2) → ¬ (is-surjective f) cantor X f H = ( apply-universal-property-trunc-Prop ( H (map-cantor X f)) ( empty-Prop) ( not-in-image-map-cantor X f)) ```