# Commuting prisms of maps ```agda module foundation.commuting-prisms-of-maps where open import foundation-core.commuting-prisms-of-maps public ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-maps open import foundation.commuting-triangles-of-maps open import foundation.composition-algebra open import foundation.function-extensionality open import foundation.identity-types open import foundation.postcomposition-functions open import foundation.precomposition-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-homotopies open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.homotopies ``` </details> ## Definitions ### Vertical pasting of vertical prisms of maps ```agda module _ { l1 l2 l3 l1' l2' l3' l1'' l2'' l3'' : Level} { A : UU l1} {B : UU l2} {C : UU l3} ( f : A → C) (g : B → C) (h : A → B) { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} ( f' : A' → C') (g' : B' → C') (h' : A' → B') ( hA : A → A') (hB : B → B') (hC : C → C') { A'' : UU l1''} {B'' : UU l2''} {C'' : UU l3''} ( f'' : A'' → C'') (g'' : B'' → C'') (h'' : A'' → B'') ( hA' : A' → A'') (hB' : B' → B'') (hC' : C' → C'') ( top : coherence-triangle-maps f g h) ( front-top : coherence-square-maps f hA hC f') ( right-top : coherence-square-maps g hB hC g') ( left-top : coherence-square-maps h hA hB h') ( mid : coherence-triangle-maps f' g' h') ( front-bottom : coherence-square-maps f' hA' hC' f'') ( right-bottom : coherence-square-maps g' hB' hC' g'') ( left-bottom : coherence-square-maps h' hA' hB' h'') ( bottom : coherence-triangle-maps f'' g'' h'') where pasting-vertical-coherence-prism-maps : vertical-coherence-prism-maps f g h f' g' h' hA hB hC ( top) ( front-top) ( right-top) ( left-top) ( mid) → vertical-coherence-prism-maps f' g' h' f'' g'' h'' hA' hB' hC' ( mid) ( front-bottom) ( right-bottom) ( left-bottom) ( bottom) → vertical-coherence-prism-maps f g h f'' g'' h'' ( hA' ∘ hA) ( hB' ∘ hB) ( hC' ∘ hC) ( top) ( pasting-vertical-coherence-square-maps f hA hC f' hA' hC' f'' ( front-top) ( front-bottom)) ( pasting-vertical-coherence-square-maps g hB hC g' hB' hC' g'' ( right-top) ( right-bottom)) ( pasting-vertical-coherence-square-maps h hA hB h' hA' hB' h'' ( left-top) ( left-bottom)) ( bottom) pasting-vertical-coherence-prism-maps prism-top prism-bottom = ( ap-concat-htpy ( bottom ·r hA' ·r hA) ( commutative-pasting-vertical-pasting-horizontal-coherence-square-maps h g hA hB hC h' g' hA' hB' hC' h'' g'' ( left-top) ( right-top) ( left-bottom) ( right-bottom))) ∙h ( right-whisker-concat-coherence-square-homotopies ( front-bottom ·r hA) ( bottom ·r hA' ·r hA) ( hC' ·l mid ·r hA) ( ( pasting-horizontal-coherence-square-maps h' g' hA' hB' hC' h'' g'' left-bottom right-bottom) ·r ( hA)) ( prism-bottom ·r hA) ( hC' ·l ((g' ·l left-top) ∙h (right-top ·r h))) ) ∙h ( ap-concat-htpy ( front-bottom ·r hA) ( ( map-coherence-square-homotopies hC' ( front-top) ( mid ·r hA) (hC ·l top) ( pasting-horizontal-coherence-square-maps h g hA hB hC h' g' ( left-top) ( right-top)) ( prism-top)) ∙h ( ap-concat-htpy ( hC' ·l front-top) ( preserves-comp-left-whisker-comp hC' hC top)))) ∙h ( inv-htpy-assoc-htpy ( front-bottom ·r hA) ( hC' ·l front-top) ( ( hC' ∘ hC) ·l top)) ``` ## Properties ### The two definitions of vertical prisms are equivalent ```agda module _ { l1 l2 l3 l1' l2' l3' : Level} { A : UU l1} {B : UU l2} {C : UU l3} ( f : A → C) (g : B → C) (h : A → B) { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} ( f' : A' → C') (g' : B' → C') (h' : A' → B') ( hA : A → A') (hB : B → B') (hC : C → C') ( top : coherence-triangle-maps f g h) ( inv-front : coherence-square-maps' f hA hC f') ( inv-right : coherence-square-maps' g hB hC g') ( left : coherence-square-maps h hA hB h') ( bottom : coherence-triangle-maps f' g' h') where equiv-rotate-vertical-coherence-prism-maps : vertical-coherence-prism-maps' f g h f' g' h' hA hB hC ( top) ( inv-front) ( inv-right) ( left) ( bottom) ≃ vertical-coherence-prism-maps f g h f' g' h' hA hB hC ( top) ( inv-htpy inv-front) ( inv-htpy inv-right) ( left) ( bottom) equiv-rotate-vertical-coherence-prism-maps = equiv-Π-equiv-family ( λ a → ( equiv-concat-assoc ( bottom (hA a)) ( ap g' (left a)) ( inv (inv-right (h a))) _) ∘e ( equiv-right-transpose-eq-concat' _ ( inv (inv-front a) ∙ ap hC (top a)) ( inv-right (h a))) ∘e ( inv-equiv ( equiv-concat-assoc' _ ( inv (inv-front a)) ( ap hC (top a)) ( inv-right (h a)))) ∘e ( equiv-left-transpose-eq-concat ( inv-front a) ( bottom (hA a) ∙ ap g' (left a)) ( _))) rotate-vertical-coherence-prism-maps : vertical-coherence-prism-maps' f g h f' g' h' hA hB hC ( top) ( inv-front) ( inv-right) ( left) ( bottom) → vertical-coherence-prism-maps f g h f' g' h' hA hB hC ( top) ( inv-htpy inv-front) ( inv-htpy inv-right) ( left) ( bottom) rotate-vertical-coherence-prism-maps = map-equiv equiv-rotate-vertical-coherence-prism-maps ``` ### Commuting prisms of maps induce commuting prisms of precomposition maps We prove this for a few different formulations of commuting prisms of maps. The basic set-up is that, given a commuting prism of maps ```text B h ∧| \ g / | \ / f | ⇑ ∨ A ---------> C | | hB | | ⇗ ∨ ⇗ | hA | B' | hC | h' ∧ \ g' | | / ⇑ \ | ∨/ ∨∨ A' --------> C' f' ``` we have commuting prisms of [precomposition maps](foundation-core.precomposition-functions.md) ```text (B' → S) (- ∘ g') ∧ | \ (- ∘ h') / | \ / (- ∘ f')| ⇑ ∨ (C' → S) ---------------> (A' → S) | | | | | (- ∘ hB) | | ⇙ ∨ ⇙ | (- ∘ hC) | (B → S) | (- ∘ hA) | (- ∘ g) ∧ \ (- ∘ h) | | / ⇑ \ | ∨ / ∨ ∨ (C → S) ----------------> (A → S). (- ∘ f) ``` Observe that the bottom and top triangles have switched positions, the diagram is mirrored along the vertical axis compared to the underlying commuting prism, and that the direction of the homotopies of the vertical squares are flipped. ```agda module _ { l1 l2 l3 l1' l2' l3' l : Level} { A : UU l1} {B : UU l2} {C : UU l3} ( f : A → C) (g : B → C) (h : A → B) { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} ( f' : A' → C') (g' : B' → C') (h' : A' → B') ( hA : A → A') (hB : B → B') (hC : C → C') ( top : coherence-triangle-maps f g h) ( front : coherence-square-maps f hA hC f') ( right : coherence-square-maps g hB hC g') ( left : coherence-square-maps h hA hB h') ( bottom : coherence-triangle-maps f' g' h') ( H : vertical-coherence-prism-maps f g h f' g' h' hA hB hC ( top) ( front) ( right) ( left) ( bottom)) ( S : UU l) where precomp-vertical-coherence-prism-inv-squares-maps : vertical-coherence-prism-inv-squares-maps ( precomp f' S) ( precomp h' S) ( precomp g' S) ( precomp f S) ( precomp h S) ( precomp g S) ( precomp hC S) ( precomp hB S) ( precomp hA S) ( precomp-coherence-triangle-maps f' g' h' bottom S) ( precomp-coherence-square-maps f hA hC f' front S) ( precomp-coherence-square-maps h hA hB h' left S) ( precomp-coherence-square-maps g hB hC g' right S) ( precomp-coherence-triangle-maps f g h top S) precomp-vertical-coherence-prism-inv-squares-maps = ( ap-concat-htpy ( htpy-precomp front S) ( inv-distributive-htpy-precomp-left-whisker hC top S)) ∙h ( inv-htpy ( distributive-htpy-precomp-concat-htpy front (hC ·l top) S)) ∙h ( λ i → ap eq-htpy (ap (i ·l_) (eq-htpy (inv-htpy H)))) ∙h ( distributive-htpy-precomp-concat-htpy ( bottom ·r hA) ( pasting-horizontal-coherence-square-maps h g hA hB hC h' g' left right) ( S)) ∙h ( ap-binary-concat-htpy ( distributive-htpy-precomp-right-whisker hA bottom S) ( ( distributive-htpy-precomp-concat-htpy (g' ·l left) (right ·r h) S) ∙h ( ap-binary-concat-htpy ( distributive-htpy-precomp-left-whisker g' left S) ( distributive-htpy-precomp-right-whisker h right S)))) precomp-vertical-coherence-prism-maps : vertical-coherence-prism-maps ( precomp f' S) ( precomp h' S) ( precomp g' S) ( precomp f S) ( precomp h S) ( precomp g S) ( precomp hC S) ( precomp hB S) ( precomp hA S) ( precomp-coherence-triangle-maps f' g' h' bottom S) ( inv-htpy (precomp-coherence-square-maps f hA hC f' front S)) ( inv-htpy (precomp-coherence-square-maps h hA hB h' left S)) ( inv-htpy (precomp-coherence-square-maps g hB hC g' right S)) ( precomp-coherence-triangle-maps f g h top S) precomp-vertical-coherence-prism-maps = vertical-coherence-prism-maps-vertical-coherence-prism-inv-squares-maps ( precomp f' S) ( precomp h' S) ( precomp g' S) ( precomp f S) ( precomp h S) ( precomp g S) ( precomp hC S) ( precomp hB S) ( precomp hA S) ( precomp-coherence-triangle-maps f' g' h' bottom S) ( precomp-coherence-square-maps f hA hC f' front S) ( precomp-coherence-square-maps h hA hB h' left S) ( precomp-coherence-square-maps g hB hC g' right S) ( precomp-coherence-triangle-maps f g h top S) ( precomp-vertical-coherence-prism-inv-squares-maps) module _ { l1 l2 l3 l1' l2' l3' l : Level} { A : UU l1} {B : UU l2} {C : UU l3} ( f : A → C) (g : B → C) (h : A → B) { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} ( f' : A' → C') (g' : B' → C') (h' : A' → B') ( hA : A → A') (hB : B → B') (hC : C → C') ( inv-top : coherence-triangle-maps' f g h) ( front : coherence-square-maps f hA hC f') ( right : coherence-square-maps g hB hC g') ( left : coherence-square-maps h hA hB h') ( inv-bottom : coherence-triangle-maps' f' g' h') ( H : vertical-coherence-prism-inv-triangles-maps f g h f' g' h' hA hB hC ( inv-top) ( front) ( right) ( left) ( inv-bottom)) (S : UU l) where precomp-vertical-inv-boundary-vertical-coherence-inv-triangles-prism-maps : vertical-coherence-prism-inv-boundary-maps ( precomp f' S) ( precomp h' S) ( precomp g' S) ( precomp f S) ( precomp h S) ( precomp g S) ( precomp hC S) ( precomp hB S) ( precomp hA S) ( precomp-coherence-triangle-maps' f' g' h' inv-bottom S) ( precomp-coherence-square-maps f hA hC f' front S) ( precomp-coherence-square-maps h hA hB h' left S) ( precomp-coherence-square-maps g hB hC g' right S) ( precomp-coherence-triangle-maps' f g h inv-top S) precomp-vertical-inv-boundary-vertical-coherence-inv-triangles-prism-maps = ( inv-htpy ( ( compute-concat-htpy-precomp ( (g' ·l left) ∙h (right ·r h)) ( hC ·l inv-top) ( S)) ∙h ( ap-binary-concat-htpy ( ( compute-concat-htpy-precomp (g' ·l left) (right ·r h) S) ∙h ( ap-binary-concat-htpy ( distributive-htpy-precomp-left-whisker g' left S) ( distributive-htpy-precomp-right-whisker h right S))) ( distributive-htpy-precomp-left-whisker hC inv-top S)))) ∙h ( λ i → ap (λ p → htpy-precomp p S i) (eq-htpy H)) ∙h ( compute-concat-htpy-precomp (inv-bottom ·r hA) front S) ∙h ( ap-concat-htpy' ( htpy-precomp front S) ( distributive-htpy-precomp-right-whisker hA inv-bottom S)) precomp-vertical-coherence-prism-inv-triangles-maps : vertical-coherence-prism-inv-triangles-maps ( precomp f' S) ( precomp h' S) ( precomp g' S) ( precomp f S) ( precomp h S) ( precomp g S) ( precomp hC S) ( precomp hB S) ( precomp hA S) ( precomp-coherence-triangle-maps' f' g' h' inv-bottom S) ( inv-htpy (precomp-coherence-square-maps f hA hC f' front S)) ( inv-htpy (precomp-coherence-square-maps h hA hB h' left S)) ( inv-htpy (precomp-coherence-square-maps g hB hC g' right S)) ( precomp-coherence-triangle-maps' f g h inv-top S) precomp-vertical-coherence-prism-inv-triangles-maps = vertical-coherence-prism-inv-triangles-maps-vertical-coherence-prism-inv-boundary-maps ( precomp f' S) ( precomp h' S) ( precomp g' S) ( precomp f S) ( precomp h S) ( precomp g S) ( precomp hC S) ( precomp hB S) ( precomp hA S) ( precomp-coherence-triangle-maps' f' g' h' inv-bottom S) ( precomp-coherence-square-maps f hA hC f' front S) ( precomp-coherence-square-maps h hA hB h' left S) ( precomp-coherence-square-maps g hB hC g' right S) ( precomp-coherence-triangle-maps' f g h inv-top S) ( precomp-vertical-inv-boundary-vertical-coherence-inv-triangles-prism-maps) ``` ### Commuting prisms of maps induce commuting prisms of postcomposition maps Given a commuting prism of maps ```text B h ∧| \ g / | \ / f | ⇑ ∨ A ---------> C | | hB | | ⇗ ∨ ⇗ | hA | B' | hC | h' ∧ \ g' | | / ⇑ \ | ∨/ ∨∨ A' --------> C' f' ``` we have commuting prisms of [postcomposition maps](foundation-core.postcomposition-functions.md)s ```text (S → B) (h ∘ -) ∧ | \ (g ∘ -) / | \ / (f ∘ -)| ⇑ ∨ (S → A) ----------------> (S → C) | | | | | (hB ∘ -) | | ⇗ ∨ ⇗ | (hA ∘ -) | (S → B') | (hC ∘ -) | (h' ∘ -) ∧ \ (g' ∘ -) | | / ⇑ \ | ∨ / ∨ ∨ (S → A') ---------------> (S → C'). (f' ∘ -) ``` ```agda module _ { l1 l2 l3 l1' l2' l3' l : Level} { A : UU l1} {B : UU l2} {C : UU l3} ( f : A → C) (g : B → C) (h : A → B) { A' : UU l1'} {B' : UU l2'} {C' : UU l3'} ( f' : A' → C') (g' : B' → C') (h' : A' → B') ( hA : A → A') (hB : B → B') (hC : C → C') ( inv-top : coherence-triangle-maps' f g h) ( front : coherence-square-maps f hA hC f') ( right : coherence-square-maps g hB hC g') ( left : coherence-square-maps h hA hB h') ( inv-bottom : coherence-triangle-maps' f' g' h') ( H : vertical-coherence-prism-inv-triangles-maps f g h f' g' h' hA hB hC ( inv-top) ( front) ( right) ( left) ( inv-bottom)) (S : UU l) where postcomp-vertical-coherence-prism-inv-triangles-maps : vertical-coherence-prism-inv-triangles-maps ( postcomp S f) ( postcomp S g) ( postcomp S h) ( postcomp S f') ( postcomp S g') ( postcomp S h') ( postcomp S hA) ( postcomp S hB) ( postcomp S hC) ( htpy-postcomp S inv-top) ( htpy-postcomp S front) ( htpy-postcomp S right) ( htpy-postcomp S left) ( htpy-postcomp S inv-bottom) postcomp-vertical-coherence-prism-inv-triangles-maps = ( inv-htpy ( ( distributive-htpy-postcomp-concat-htpy ( g' ·l left ∙h right ·r h) ( hC ·l inv-top) ( S)) ∙h ( ap-binary-concat-htpy ( ( distributive-htpy-postcomp-concat-htpy ( g' ·l left) ( right ·r h) S) ∙h ( ap-binary-concat-htpy ( distributive-htpy-postcomp-left-whisker g' left S) ( distributive-htpy-postcomp-right-whisker h right S))) ( distributive-htpy-postcomp-left-whisker hC inv-top S)))) ∙h ( λ i → ap (λ p → htpy-postcomp S p i) (eq-htpy H)) ∙h ( distributive-htpy-postcomp-concat-htpy (inv-bottom ·r hA) front S) ```