# Preunivalent type families ```agda module foundation.preunivalent-type-families where ``` <details><summary>Imports</summary> ```agda open import foundation.0-maps open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalence-injective-type-families open import foundation.faithful-maps open import foundation.function-types open import foundation.injective-maps open import foundation.preunivalence open import foundation.retractions open import foundation.sets open import foundation.subuniverses open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.univalence ``` </details> ## Idea A type family `B` over `A` is said to be {{#concept "preunivalent" Disambiguation="type family" Agda=is-preunivalent}} if the map ```text equiv-tr B : x = y → B x ≃ B y ``` is an [embedding](foundation-core.embeddings.md) for every `x y : A`. ## Definition ```agda is-preunivalent : {l1 l2 : Level} {A : UU l1} → (A → UU l2) → UU (l1 ⊔ l2) is-preunivalent {A = A} B = (x y : A) → is-emb (λ (p : x = y) → equiv-tr B p) ``` ## Properties ### The preunivalence axiom states that the identity family `id : 𝒰 → 𝒰` is preunivalent ```agda is-preunivalent-UU : (l : Level) → is-preunivalent (id {A = UU l}) is-preunivalent-UU l = preunivalence ``` ### Assuming the preunivalence axiom, type families are preunivalent if and only if they are faithful as maps **Proof:** We have the [commuting triangle of maps](foundation-core.commuting-triangles-of-maps.md) ```text ap B (x = y) -----> (B x = B y) \ / \ / equiv-tr B \ / equiv-eq ∨ ∨ (B x ≃ B y) ``` where the right edge is an embedding by the [preunivalence axiom](foundation.preunivalence.md). Hence, the top map is an embedding if and only if the left map is. ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where abstract is-faithful-is-preunivalent : is-preunivalent B → is-faithful B is-faithful-is-preunivalent U x y = is-emb-top-map-triangle ( equiv-tr B) ( equiv-eq) ( ap B) ( λ where refl → refl) ( preunivalence (B x) (B y)) ( U x y) is-preunivalent-is-faithful : is-faithful B → is-preunivalent B is-preunivalent-is-faithful is-faithful-B x y = is-emb-left-map-triangle ( equiv-tr B) ( equiv-eq) ( ap B) ( λ where refl → refl) ( preunivalence (B x) (B y)) ( is-faithful-B x y) is-0-map-is-preunivalent : is-preunivalent B → is-0-map B is-0-map-is-preunivalent U = is-0-map-is-faithful (is-faithful-is-preunivalent U) is-preunivalent-is-0-map : is-0-map B → is-preunivalent B is-preunivalent-is-0-map H = is-preunivalent-is-faithful (is-faithful-is-0-map H) ``` ### Families of sets are preunivalent if `equiv-tr` is fiberwise injective ```agda module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (is-set-B : (x : A) → is-set (B x)) where is-preunivalent-is-injective-equiv-tr-is-set : ((x y : A) → is-injective (equiv-tr B {x} {y})) → is-preunivalent B is-preunivalent-is-injective-equiv-tr-is-set is-inj-B x y = is-emb-is-injective ( is-set-equiv-is-set (is-set-B x) (is-set-B y)) ( is-inj-B x y) is-preunivalent-retraction-equiv-tr-is-set : ((x y : A) → retraction (equiv-tr B {x} {y})) → is-preunivalent B is-preunivalent-retraction-equiv-tr-is-set R = is-preunivalent-is-injective-equiv-tr-is-set ( λ x y → is-injective-retraction (equiv-tr B) (R x y)) module _ {l1 l2 : Level} {A : UU l1} (B : A → Set l2) where is-preunivalent-is-injective-equiv-tr-Set : ((x y : A) → is-injective (equiv-tr (type-Set ∘ B) {x} {y})) → is-preunivalent (type-Set ∘ B) is-preunivalent-is-injective-equiv-tr-Set = is-preunivalent-is-injective-equiv-tr-is-set ( type-Set ∘ B) ( is-set-type-Set ∘ B) is-preunivalent-retraction-equiv-tr-Set : ((x y : A) → retraction (equiv-tr (type-Set ∘ B) {x} {y})) → is-preunivalent (type-Set ∘ B) is-preunivalent-retraction-equiv-tr-Set = is-preunivalent-retraction-equiv-tr-is-set ( type-Set ∘ B) ( is-set-type-Set ∘ B) ``` ### Inclusions of subuniverses into the universe are preunivalent **Note.** These proofs rely on essential use of the preunivalence axiom. ```agda is-preunivalent-projection-Type-With-Set-Element : {l1 l2 : Level} (S : UU l1 → Set l2) → is-preunivalent (pr1 {A = UU l1} {B = type-Set ∘ S}) is-preunivalent-projection-Type-With-Set-Element S = is-preunivalent-is-0-map (is-0-map-pr1 (is-set-type-Set ∘ S)) is-preunivalent-inclusion-subuniverse : {l1 l2 : Level} (S : subuniverse l1 l2) → is-preunivalent (inclusion-subuniverse S) is-preunivalent-inclusion-subuniverse S = is-preunivalent-projection-Type-With-Set-Element (set-Prop ∘ S) ``` ## See also - [Univalent type families](foundation.univalent-type-families.md) - [Transport-split type families](foundation.transport-split-type-families.md) - The [standard finite types](univalent-combinatorics.standard-finite-types.md) is a type family which is preunivalent but not univalent.