# Reflecting maps for equivalence relations ```agda module foundation.reflecting-maps-equivalence-relations where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.effective-maps-equivalence-relations open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopy-induction open import foundation.subtype-identity-principle open import foundation.universe-levels open import foundation-core.equivalence-relations open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.torsorial-type-families ``` </details> ## Idea A map `f : A → B` out of a type `A` equipped with an equivalence relation `R` is said to **reflect** `R` if we have `R x y → f x = f y` for every `x y : A`. ## Definitions ### Maps reflecting equivalence relations ```agda module _ {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) where reflects-equivalence-relation : {l3 : Level} {B : UU l3} → (A → B) → UU (l1 ⊔ l2 ⊔ l3) reflects-equivalence-relation f = {x y : A} → sim-equivalence-relation R x y → (f x = f y) reflecting-map-equivalence-relation : {l3 : Level} → UU l3 → UU (l1 ⊔ l2 ⊔ l3) reflecting-map-equivalence-relation B = Σ (A → B) reflects-equivalence-relation map-reflecting-map-equivalence-relation : {l3 : Level} {B : UU l3} → reflecting-map-equivalence-relation B → A → B map-reflecting-map-equivalence-relation = pr1 reflects-map-reflecting-map-equivalence-relation : {l3 : Level} {B : UU l3} (f : reflecting-map-equivalence-relation B) → reflects-equivalence-relation (map-reflecting-map-equivalence-relation f) reflects-map-reflecting-map-equivalence-relation = pr2 is-prop-reflects-equivalence-relation : {l3 : Level} (B : Set l3) (f : A → type-Set B) → is-prop (reflects-equivalence-relation f) is-prop-reflects-equivalence-relation B f = is-prop-implicit-Π ( λ x → is-prop-implicit-Π ( λ y → is-prop-function-type (is-set-type-Set B (f x) (f y)))) reflects-prop-equivalence-relation : {l3 : Level} (B : Set l3) (f : A → type-Set B) → Prop (l1 ⊔ l2 ⊔ l3) pr1 (reflects-prop-equivalence-relation B f) = reflects-equivalence-relation f pr2 (reflects-prop-equivalence-relation B f) = is-prop-reflects-equivalence-relation B f ``` ## Properties ### Any surjective and effective map reflects the equivalence relation ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (q : A → type-Set B) where reflects-equivalence-relation-is-surjective-and-effective : is-surjective-and-effective R q → reflects-equivalence-relation R q reflects-equivalence-relation-is-surjective-and-effective E {x} {y} = map-inv-equiv (pr2 E x y) reflecting-map-equivalence-relation-is-surjective-and-effective : is-surjective-and-effective R q → reflecting-map-equivalence-relation R (type-Set B) pr1 (reflecting-map-equivalence-relation-is-surjective-and-effective E) = q pr2 (reflecting-map-equivalence-relation-is-surjective-and-effective E) = reflects-equivalence-relation-is-surjective-and-effective E ``` ### Characterizing the identity type of reflecting maps into sets ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) where htpy-reflecting-map-equivalence-relation : (g : reflecting-map-equivalence-relation R (type-Set B)) → UU (l1 ⊔ l3) htpy-reflecting-map-equivalence-relation g = pr1 f ~ pr1 g refl-htpy-reflecting-map-equivalence-relation : htpy-reflecting-map-equivalence-relation f refl-htpy-reflecting-map-equivalence-relation = refl-htpy htpy-eq-reflecting-map-equivalence-relation : (g : reflecting-map-equivalence-relation R (type-Set B)) → f = g → htpy-reflecting-map-equivalence-relation g htpy-eq-reflecting-map-equivalence-relation .f refl = refl-htpy-reflecting-map-equivalence-relation is-torsorial-htpy-reflecting-map-equivalence-relation : is-torsorial (htpy-reflecting-map-equivalence-relation) is-torsorial-htpy-reflecting-map-equivalence-relation = is-torsorial-Eq-subtype ( is-torsorial-htpy (pr1 f)) ( is-prop-reflects-equivalence-relation R B) ( pr1 f) ( refl-htpy) ( pr2 f) is-equiv-htpy-eq-reflecting-map-equivalence-relation : (g : reflecting-map-equivalence-relation R (type-Set B)) → is-equiv (htpy-eq-reflecting-map-equivalence-relation g) is-equiv-htpy-eq-reflecting-map-equivalence-relation = fundamental-theorem-id is-torsorial-htpy-reflecting-map-equivalence-relation htpy-eq-reflecting-map-equivalence-relation extensionality-reflecting-map-equivalence-relation : (g : reflecting-map-equivalence-relation R (type-Set B)) → (f = g) ≃ htpy-reflecting-map-equivalence-relation g pr1 (extensionality-reflecting-map-equivalence-relation g) = htpy-eq-reflecting-map-equivalence-relation g pr2 (extensionality-reflecting-map-equivalence-relation g) = is-equiv-htpy-eq-reflecting-map-equivalence-relation g eq-htpy-reflecting-map-equivalence-relation : (g : reflecting-map-equivalence-relation R (type-Set B)) → htpy-reflecting-map-equivalence-relation g → f = g eq-htpy-reflecting-map-equivalence-relation g = map-inv-is-equiv (is-equiv-htpy-eq-reflecting-map-equivalence-relation g) ```