# Strict inequality on the natural numbers ```agda module elementary-number-theory.strict-inequality-natural-numbers where ``` <details><summary>Imports</summary> ```agda open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.coproduct-types open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.function-types open import foundation.functoriality-coproduct-types open import foundation.identity-types open import foundation.negated-equality open import foundation.negation open import foundation.propositions open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels ``` </details> ## Definition ### The standard strict inequality on the natural numbers ```agda le-ℕ-Prop : ℕ → ℕ → Prop lzero le-ℕ-Prop m zero-ℕ = empty-Prop le-ℕ-Prop zero-ℕ (succ-ℕ m) = unit-Prop le-ℕ-Prop (succ-ℕ n) (succ-ℕ m) = le-ℕ-Prop n m le-ℕ : ℕ → ℕ → UU lzero le-ℕ n m = type-Prop (le-ℕ-Prop n m) is-prop-le-ℕ : (n : ℕ) → (m : ℕ) → is-prop (le-ℕ n m) is-prop-le-ℕ n m = is-prop-type-Prop (le-ℕ-Prop n m) infix 30 _<-ℕ_ _<-ℕ_ = le-ℕ ``` ## Properties ### Concatenating strict inequalities and equalities ```agda concatenate-eq-le-eq-ℕ : {x y z w : ℕ} → x = y → le-ℕ y z → z = w → le-ℕ x w concatenate-eq-le-eq-ℕ refl p refl = p concatenate-eq-le-ℕ : {x y z : ℕ} → x = y → le-ℕ y z → le-ℕ x z concatenate-eq-le-ℕ refl p = p concatenate-le-eq-ℕ : {x y z : ℕ} → le-ℕ x y → y = z → le-ℕ x z concatenate-le-eq-ℕ p refl = p ``` ### Strict inequality on the natural numbers is decidable ```agda is-decidable-le-ℕ : (m n : ℕ) → is-decidable (le-ℕ m n) is-decidable-le-ℕ zero-ℕ zero-ℕ = inr id is-decidable-le-ℕ zero-ℕ (succ-ℕ n) = inl star is-decidable-le-ℕ (succ-ℕ m) zero-ℕ = inr id is-decidable-le-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-le-ℕ m n ``` ### If `m < n` then `n` must be nonzero ```agda is-nonzero-le-ℕ : (m n : ℕ) → le-ℕ m n → is-nonzero-ℕ n is-nonzero-le-ℕ m .zero-ℕ () refl ``` ### Any nonzero natural number is strictly greater than `0` ```agda le-is-nonzero-ℕ : (n : ℕ) → is-nonzero-ℕ n → le-ℕ zero-ℕ n le-is-nonzero-ℕ zero-ℕ H = H refl le-is-nonzero-ℕ (succ-ℕ n) H = star ``` ### No natural number is strictly less than zero ```agda contradiction-le-zero-ℕ : (m : ℕ) → (le-ℕ m zero-ℕ) → empty contradiction-le-zero-ℕ zero-ℕ () contradiction-le-zero-ℕ (succ-ℕ m) () ``` ### No successor is strictly less than one ```agda contradiction-le-one-ℕ : (n : ℕ) → le-ℕ (succ-ℕ n) 1 → empty contradiction-le-one-ℕ zero-ℕ () contradiction-le-one-ℕ (succ-ℕ n) () ``` ### The strict inequality on the natural numbers is anti-reflexive ```agda anti-reflexive-le-ℕ : (n : ℕ) → ¬ (n <-ℕ n) anti-reflexive-le-ℕ zero-ℕ () anti-reflexive-le-ℕ (succ-ℕ n) = anti-reflexive-le-ℕ n ``` ### If `x < y` then `x ≠ y` ```agda neq-le-ℕ : {x y : ℕ} → le-ℕ x y → x ≠ y neq-le-ℕ {zero-ℕ} {succ-ℕ y} H = is-nonzero-succ-ℕ y ∘ inv neq-le-ℕ {succ-ℕ x} {succ-ℕ y} H p = neq-le-ℕ H (is-injective-succ-ℕ p) ``` ### The strict inequality on the natural numbers is antisymmetric ```agda antisymmetric-le-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ n m → m = n antisymmetric-le-ℕ (succ-ℕ m) (succ-ℕ n) p q = ap succ-ℕ (antisymmetric-le-ℕ m n p q) ``` ### The strict inequality on the natural numbers is transitive ```agda transitive-le-ℕ : (n m l : ℕ) → (le-ℕ n m) → (le-ℕ m l) → (le-ℕ n l) transitive-le-ℕ zero-ℕ (succ-ℕ m) (succ-ℕ l) p q = star transitive-le-ℕ (succ-ℕ n) (succ-ℕ m) (succ-ℕ l) p q = transitive-le-ℕ n m l p q ``` ### A sharper variant of transitivity ```agda transitive-le-ℕ' : (k l m : ℕ) → (le-ℕ k l) → (le-ℕ l (succ-ℕ m)) → le-ℕ k m transitive-le-ℕ' zero-ℕ zero-ℕ m () s transitive-le-ℕ' (succ-ℕ k) zero-ℕ m () s transitive-le-ℕ' zero-ℕ (succ-ℕ l) zero-ℕ star s = ex-falso (contradiction-le-one-ℕ l s) transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) zero-ℕ t s = ex-falso (contradiction-le-one-ℕ l s) transitive-le-ℕ' zero-ℕ (succ-ℕ l) (succ-ℕ m) star s = star transitive-le-ℕ' (succ-ℕ k) (succ-ℕ l) (succ-ℕ m) t s = transitive-le-ℕ' k l m t s ``` ### The strict inequality on the natural numbers is linear ```agda linear-le-ℕ : (x y : ℕ) → (le-ℕ x y) + ((x = y) + (le-ℕ y x)) linear-le-ℕ zero-ℕ zero-ℕ = inr (inl refl) linear-le-ℕ zero-ℕ (succ-ℕ y) = inl star linear-le-ℕ (succ-ℕ x) zero-ℕ = inr (inr star) linear-le-ℕ (succ-ℕ x) (succ-ℕ y) = map-coproduct id (map-coproduct (ap succ-ℕ) id) (linear-le-ℕ x y) ``` ### `n < m` if and only if there exists a nonzero natural number `l` such that `n + l = m` ```agda subtraction-le-ℕ : (n m : ℕ) → le-ℕ n m → Σ ℕ (λ l → (is-nonzero-ℕ l) × (l +ℕ n = m)) subtraction-le-ℕ zero-ℕ m p = pair m (pair (is-nonzero-le-ℕ zero-ℕ m p) refl) subtraction-le-ℕ (succ-ℕ n) (succ-ℕ m) p = pair (pr1 P) (pair (pr1 (pr2 P)) (ap succ-ℕ (pr2 (pr2 P)))) where P : Σ ℕ (λ l' → (is-nonzero-ℕ l') × (l' +ℕ n = m)) P = subtraction-le-ℕ n m p le-subtraction-ℕ : (n m l : ℕ) → is-nonzero-ℕ l → l +ℕ n = m → le-ℕ n m le-subtraction-ℕ zero-ℕ m l q p = tr (λ x → le-ℕ zero-ℕ x) p (le-is-nonzero-ℕ l q) le-subtraction-ℕ (succ-ℕ n) (succ-ℕ m) l q p = le-subtraction-ℕ n m l q (is-injective-succ-ℕ p) ``` ### Any natural number is strictly less than its successor ```agda succ-le-ℕ : (n : ℕ) → le-ℕ n (succ-ℕ n) succ-le-ℕ zero-ℕ = star succ-le-ℕ (succ-ℕ n) = succ-le-ℕ n ``` ### The successor function preserves strict inequality on the right ```agda preserves-le-succ-ℕ : (m n : ℕ) → le-ℕ m n → le-ℕ m (succ-ℕ n) preserves-le-succ-ℕ m n H = transitive-le-ℕ m n (succ-ℕ n) H (succ-le-ℕ n) ``` ### Concatenating strict and nonstrict inequalities ```agda concatenate-leq-le-ℕ : {x y z : ℕ} → x ≤-ℕ y → le-ℕ y z → le-ℕ x z concatenate-leq-le-ℕ {zero-ℕ} {zero-ℕ} {succ-ℕ z} H K = star concatenate-leq-le-ℕ {zero-ℕ} {succ-ℕ y} {succ-ℕ z} H K = star concatenate-leq-le-ℕ {succ-ℕ x} {succ-ℕ y} {succ-ℕ z} H K = concatenate-leq-le-ℕ {x} {y} {z} H K concatenate-le-leq-ℕ : {x y z : ℕ} → le-ℕ x y → y ≤-ℕ z → le-ℕ x z concatenate-le-leq-ℕ {zero-ℕ} {succ-ℕ y} {succ-ℕ z} H K = star concatenate-le-leq-ℕ {succ-ℕ x} {succ-ℕ y} {succ-ℕ z} H K = concatenate-le-leq-ℕ {x} {y} {z} H K ``` ### If `m < n` then `n ≰ m` ```agda contradiction-le-ℕ : (m n : ℕ) → le-ℕ m n → ¬ (n ≤-ℕ m) contradiction-le-ℕ zero-ℕ (succ-ℕ n) H K = K contradiction-le-ℕ (succ-ℕ m) (succ-ℕ n) H = contradiction-le-ℕ m n H ``` ### If `n ≤ m` then `m ≮ n` ```agda contradiction-le-ℕ' : (m n : ℕ) → n ≤-ℕ m → ¬ (le-ℕ m n) contradiction-le-ℕ' m n K H = contradiction-le-ℕ m n H K ``` ### If `m ≮ n` then `n ≤ m` ```agda leq-not-le-ℕ : (m n : ℕ) → ¬ (le-ℕ m n) → n ≤-ℕ m leq-not-le-ℕ zero-ℕ zero-ℕ H = star leq-not-le-ℕ zero-ℕ (succ-ℕ n) H = ex-falso (H star) leq-not-le-ℕ (succ-ℕ m) zero-ℕ H = star leq-not-le-ℕ (succ-ℕ m) (succ-ℕ n) H = leq-not-le-ℕ m n H ``` ### If `x < y` then `x ≤ y` ```agda leq-le-ℕ : (x y : ℕ) → le-ℕ x y → x ≤-ℕ y leq-le-ℕ zero-ℕ (succ-ℕ y) H = star leq-le-ℕ (succ-ℕ x) (succ-ℕ y) H = leq-le-ℕ x y H ``` ### If `x < y + 1` then `x ≤ y` ```agda leq-le-succ-ℕ : (x y : ℕ) → le-ℕ x (succ-ℕ y) → x ≤-ℕ y leq-le-succ-ℕ zero-ℕ y H = star leq-le-succ-ℕ (succ-ℕ x) (succ-ℕ y) H = leq-le-succ-ℕ x y H ``` ### If `x < y` then `x + 1 ≤ y` ```agda leq-succ-le-ℕ : (x y : ℕ) → le-ℕ x y → leq-ℕ (succ-ℕ x) y leq-succ-le-ℕ zero-ℕ (succ-ℕ y) H = star leq-succ-le-ℕ (succ-ℕ x) (succ-ℕ y) H = leq-succ-le-ℕ x y H ``` ### If `x ≤ y` then `x < y + 1` ```agda le-succ-leq-ℕ : (x y : ℕ) → leq-ℕ x y → le-ℕ x (succ-ℕ y) le-succ-leq-ℕ zero-ℕ zero-ℕ H = star le-succ-leq-ℕ zero-ℕ (succ-ℕ y) H = star le-succ-leq-ℕ (succ-ℕ x) (succ-ℕ y) H = le-succ-leq-ℕ x y H ``` ### `x ≤ y` if and only if `(x = y) + (x < y)` ```agda eq-or-le-leq-ℕ : (x y : ℕ) → leq-ℕ x y → ((x = y) + (le-ℕ x y)) eq-or-le-leq-ℕ zero-ℕ zero-ℕ H = inl refl eq-or-le-leq-ℕ zero-ℕ (succ-ℕ y) H = inr star eq-or-le-leq-ℕ (succ-ℕ x) (succ-ℕ y) H = map-coproduct (ap succ-ℕ) id (eq-or-le-leq-ℕ x y H) eq-or-le-leq-ℕ' : (x y : ℕ) → leq-ℕ x y → ((y = x) + (le-ℕ x y)) eq-or-le-leq-ℕ' x y H = map-coproduct inv id (eq-or-le-leq-ℕ x y H) leq-eq-or-le-ℕ : (x y : ℕ) → ((x = y) + (le-ℕ x y)) → leq-ℕ x y leq-eq-or-le-ℕ x .x (inl refl) = refl-leq-ℕ x leq-eq-or-le-ℕ x y (inr l) = leq-le-ℕ x y l ``` ### If `x ≤ y` and `x ≠ y` then `x < y` ```agda le-leq-neq-ℕ : {x y : ℕ} → x ≤-ℕ y → x ≠ y → le-ℕ x y le-leq-neq-ℕ {zero-ℕ} {zero-ℕ} l f = ex-falso (f refl) le-leq-neq-ℕ {zero-ℕ} {succ-ℕ y} l f = star le-leq-neq-ℕ {succ-ℕ x} {succ-ℕ y} l f = le-leq-neq-ℕ {x} {y} l (λ p → f (ap succ-ℕ p)) ```