# Diagonal maps of types ```agda module foundation.diagonal-maps-of-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.function-extensionality open import foundation.functoriality-dependent-pair-types open import foundation.morphisms-arrows open import foundation.postcomposition-functions open import foundation.retracts-of-types open import foundation.transposition-identifications-along-equivalences open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.constant-maps open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositions open import foundation-core.retractions open import foundation-core.sections ``` </details> ## Idea The {{#concept "diagonal map" Disambiguation="of a type into exponentials" Agda=diagonal-exponential}} of a type `A` is the map that includes the points of `A` into the exponential `X → A`. ## Definitions ```agda module _ {l1 l2 : Level} (A : UU l1) (X : UU l2) where diagonal-exponential : A → X → A diagonal-exponential = const X ``` ## Properties ### The action on identifications of a diagonal map is another diagonal map ```agda module _ {l1 l2 : Level} {A : UU l1} (x y : A) (B : UU l2) where htpy-diagonal-exponential-Id-ap-diagonal-exponential-htpy-eq : htpy-eq ∘ ap (diagonal-exponential A B) ~ diagonal-exponential (x = y) B htpy-diagonal-exponential-Id-ap-diagonal-exponential-htpy-eq refl = refl htpy-ap-diagonal-exponential-htpy-eq-diagonal-exponential-Id : diagonal-exponential (x = y) B ~ htpy-eq ∘ ap (diagonal-exponential A B) htpy-ap-diagonal-exponential-htpy-eq-diagonal-exponential-Id = inv-htpy htpy-diagonal-exponential-Id-ap-diagonal-exponential-htpy-eq ``` ### Given an element of the exponent the diagonal map is injective ```agda module _ {l1 l2 : Level} (A : UU l1) (B : UU l2) (b : B) where is-injective-diagonal-exponential : is-injective (diagonal-exponential A B) is-injective-diagonal-exponential p = htpy-eq p b diagonal-exponential-injection : injection A (B → A) pr1 diagonal-exponential-injection = diagonal-exponential A B pr2 diagonal-exponential-injection = is-injective-diagonal-exponential ``` ### The action on identifications of an (exponential) diagonal is a diagonal ```agda module _ {l1 l2 : Level} (A : UU l1) {B : UU l2} (x y : B) where compute-htpy-eq-ap-diagonal-exponential : htpy-eq ∘ ap (diagonal-exponential B A) ~ diagonal-exponential (x = y) A compute-htpy-eq-ap-diagonal-exponential refl = refl inv-compute-htpy-eq-ap-diagonal-exponential : diagonal-exponential (x = y) A ~ htpy-eq ∘ ap (diagonal-exponential B A) inv-compute-htpy-eq-ap-diagonal-exponential = inv-htpy compute-htpy-eq-ap-diagonal-exponential compute-eq-htpy-ap-diagonal-exponential : ap (diagonal-exponential B A) ~ eq-htpy ∘ diagonal-exponential (x = y) A compute-eq-htpy-ap-diagonal-exponential p = map-eq-transpose-equiv ( equiv-funext) ( compute-htpy-eq-ap-diagonal-exponential p) ``` ### Computing the fibers of diagonal maps ```agda compute-fiber-diagonal-exponential : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → fiber (diagonal-exponential B A) f ≃ Σ B (λ b → (x : A) → b = f x) compute-fiber-diagonal-exponential f = equiv-tot (λ _ → equiv-funext) ```