# Type duality ```agda module foundation.type-duality where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.locally-small-types open import foundation.slice open import foundation.type-arithmetic-dependent-pair-types open import foundation.unit-type open import foundation.univalence open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.small-types open import foundation-core.torsorial-type-families open import trees.polynomial-endofunctors ``` </details> ## Idea Given a [univalent](foundation.univalence.md) universe `𝒰`, we can define two closely related functors acting on all types. First there is the covariant functor given by ```text P_𝒰(A) := Σ (X : 𝒰), X → A. ``` This is a [polynomial endofunctor](trees.polynomial-endofunctors.md). Second, there is the contravariant functor given by ```text P^𝒰(A) := A → 𝒰. ``` If the type `A` is [locally `𝒰`-small](foundation.locally-small-types.md), then there is a map `φ_A : P_𝒰(A) → P^𝒰(A)`. This map is natural in `A`, and it is always an [embedding](foundation-core.embeddings.md). Furthermore, the map `φ_A` is an [equivalence](foundation-core.equivalences.md) if and only if `A` is [`𝒰`-small](foundation-core.small-types.md). ## Definitions ### The polynomial endofunctor of a universe ```agda type-polynomial-endofunctor-UU : (l : Level) {l1 : Level} (A : UU l1) → UU (lsuc l ⊔ l1) type-polynomial-endofunctor-UU l = Slice l map-polynomial-endofunctor-UU : (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → type-polynomial-endofunctor-UU l A → type-polynomial-endofunctor-UU l B map-polynomial-endofunctor-UU l = map-polynomial-endofunctor (UU l) (λ X → X) ``` ### Type families ```agda type-exp-UU : (l : Level) {l1 : Level} → UU l1 → UU (lsuc l ⊔ l1) type-exp-UU l A = A → UU l map-exp-UU : (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → type-exp-UU l B → type-exp-UU l A map-exp-UU l f P = P ∘ f ``` ## Properties ### If `A` is locally `l`-small, then we can construct an embedding `type-polynomial-endofunctor l A ↪ type-exp-UU A` ```agda map-type-duality : {l l1 : Level} {A : UU l1} → is-locally-small l A → type-polynomial-endofunctor-UU l A → type-exp-UU l A map-type-duality H (X , f) a = Σ X (λ x → type-is-small (H (f x) a)) is-emb-map-type-duality : {l l1 : Level} {A : UU l1} (H : is-locally-small l A) → is-emb (map-type-duality H) is-emb-map-type-duality {l} {l1} {A} H (X , f) = fundamental-theorem-id ( is-contr-equiv ( Σ ( type-polynomial-endofunctor-UU l A) ((X , f) =_)) ( equiv-tot ( λ (Y , g) → ( inv-equiv (extensionality-Slice (X , f) (Y , g))) ∘e ( inv-equiv (equiv-fam-equiv-equiv-slice f g)) ∘e ( equiv-Π-equiv-family ( λ a → ( equiv-postcomp-equiv ( equiv-tot (λ y → inv-equiv (equiv-is-small (H (g y) a)))) ( fiber f a)) ∘e ( equiv-precomp-equiv ( equiv-tot (λ x → equiv-is-small (H (f x) a))) ( Σ Y (λ y → type-is-small (H (g y) a)))) ∘e ( equiv-univalence))) ∘e ( equiv-funext))) ( is-torsorial-Id (X , f))) ( λ Y → ap (map-type-duality H)) emb-type-duality : {l l1 : Level} {A : UU l1} → is-locally-small l A → type-polynomial-endofunctor-UU l A ↪ type-exp-UU l A pr1 (emb-type-duality H) = map-type-duality H pr2 (emb-type-duality H) = is-emb-map-type-duality H ``` ### A type `A` is small if and only if `P_𝒰(A) ↪ P^𝒰(A)` is an equivalence #### The forward direction ```agda module _ {l l1 : Level} {A : UU l1} (H : is-small l A) where map-inv-type-duality : type-exp-UU l A → type-polynomial-endofunctor-UU l A pr1 (map-inv-type-duality B) = type-is-small (is-small-Σ H (λ a → is-small' {l} {B a})) pr2 (map-inv-type-duality B) = ( pr1) ∘ ( map-inv-equiv (equiv-is-small (is-small-Σ H (λ a → is-small' {l} {B a})))) is-section-map-inv-type-duality : map-type-duality (is-locally-small-is-small H) ∘ map-inv-type-duality ~ id is-section-map-inv-type-duality B = eq-equiv-fam ( λ a → equivalence-reasoning map-type-duality ( is-locally-small-is-small H) ( map-inv-type-duality B) ( a) ≃ fiber ( ( pr1 {B = B}) ∘ ( map-inv-equiv ( equiv-is-small ( is-small-Σ H (λ a → is-small'))))) a by equiv-tot ( λ x → inv-equiv ( equiv-is-small ( is-locally-small-is-small H ( pr2 (map-inv-type-duality B) x) ( a)))) ≃ Σ ( fiber (pr1 {B = B}) a) ( λ b → fiber ( map-inv-equiv ( equiv-is-small ( is-small-Σ H (λ a → is-small' {l} {B a})))) ( pr1 b)) by compute-fiber-comp pr1 _ a ≃ fiber (pr1 {B = B}) a by right-unit-law-Σ-is-contr ( λ b → is-contr-map-is-equiv ( is-equiv-map-inv-equiv ( equiv-is-small ( is-small-Σ H (λ a → is-small' {l} {B a})))) ( pr1 b)) ≃ B a by equiv-fiber-pr1 B a) is-retraction-map-inv-type-duality : map-inv-type-duality ∘ map-type-duality (is-locally-small-is-small H) ~ id is-retraction-map-inv-type-duality X = is-injective-is-emb ( is-emb-map-type-duality (is-locally-small-is-small H)) ( is-section-map-inv-type-duality ( map-type-duality (is-locally-small-is-small H) X)) is-equiv-map-type-duality : is-equiv (map-type-duality (is-locally-small-is-small H)) is-equiv-map-type-duality = is-equiv-is-invertible map-inv-type-duality is-section-map-inv-type-duality is-retraction-map-inv-type-duality type-duality : type-polynomial-endofunctor-UU l A ≃ type-exp-UU l A pr1 type-duality = map-type-duality (is-locally-small-is-small H) pr2 type-duality = is-equiv-map-type-duality ``` #### The converse direction ```agda module _ {l l1 : Level} {A : UU l1} (H : is-locally-small l A) where is-small-is-equiv-map-type-duality : is-equiv (map-type-duality H) → is-small l A pr1 (is-small-is-equiv-map-type-duality E) = pr1 (map-inv-is-equiv E (λ _ → raise-unit l)) pr2 (is-small-is-equiv-map-type-duality E) = inv-equiv ( ( pr2 (map-inv-is-equiv E (λ _ → raise-unit l))) , ( is-equiv-is-contr-map ( λ a → is-contr-equiv ( raise-unit l) ( ( equiv-eq-fam _ _ ( is-section-map-inv-is-equiv E (λ _ → raise-unit l)) ( a)) ∘e ( equiv-tot ( λ x → equiv-is-small ( H ( pr2 (map-inv-is-equiv E (λ _ → raise-unit l)) x) ( a))))) ( is-contr-raise-unit)))) ``` ### Type duality formulated using `l1 ⊔ l2` ```agda Fiber : {l l1 : Level} (A : UU l1) → Slice l A → A → UU (l1 ⊔ l) Fiber A f = fiber (pr2 f) Pr1 : {l l1 : Level} (A : UU l1) → (A → UU l) → Slice (l1 ⊔ l) A pr1 (Pr1 A B) = Σ A B pr2 (Pr1 A B) = pr1 is-section-Pr1 : {l1 l2 : Level} {A : UU l1} → (Fiber {l1 ⊔ l2} A ∘ Pr1 {l1 ⊔ l2} A) ~ id is-section-Pr1 B = eq-equiv-fam (equiv-fiber-pr1 B) is-retraction-Pr1 : {l1 l2 : Level} {A : UU l1} → (Pr1 {l1 ⊔ l2} A ∘ Fiber {l1 ⊔ l2} A) ~ id is-retraction-Pr1 {A = A} (X , f) = eq-equiv-slice ( Pr1 A (Fiber A (X , f))) ( X , f) ( equiv-total-fiber f , triangle-map-equiv-total-fiber f) is-equiv-Fiber : {l1 : Level} (l2 : Level) (A : UU l1) → is-equiv (Fiber {l1 ⊔ l2} A) is-equiv-Fiber l2 A = is-equiv-is-invertible ( Pr1 A) ( is-section-Pr1 {l2 = l2}) ( is-retraction-Pr1 {l2 = l2}) equiv-Fiber : {l1 : Level} (l2 : Level) (A : UU l1) → Slice (l1 ⊔ l2) A ≃ (A → UU (l1 ⊔ l2)) pr1 (equiv-Fiber l2 A) = Fiber A pr2 (equiv-Fiber l2 A) = is-equiv-Fiber l2 A is-equiv-Pr1 : {l1 : Level} (l2 : Level) (A : UU l1) → is-equiv (Pr1 {l1 ⊔ l2} A) is-equiv-Pr1 {l1} l2 A = is-equiv-is-invertible ( Fiber A) ( is-retraction-Pr1 {l2 = l2}) ( is-section-Pr1 {l2 = l2}) equiv-Pr1 : {l1 : Level} (l2 : Level) (A : UU l1) → (A → UU (l1 ⊔ l2)) ≃ Slice (l1 ⊔ l2) A pr1 (equiv-Pr1 l2 A) = Pr1 A pr2 (equiv-Pr1 l2 A) = is-equiv-Pr1 l2 A ``` The type of all function from `A → B` is equivalent to the type of function `Y : B → 𝒰` with an equivalence `A ≃ Σ B Y ` ```agda fiber-Σ : {l1 l2 : Level} (X : UU l1) (A : UU l2) → (X → A) ≃ Σ (A → UU (l2 ⊔ l1)) (λ Y → X ≃ Σ A Y) fiber-Σ {l1} {l2} X A = ( equiv-Σ ( λ Z → X ≃ Σ A Z) ( equiv-Fiber l1 A) ( λ s → inv-equiv ( equiv-postcomp-equiv (equiv-total-fiber (pr2 s)) X))) ∘e ( equiv-right-swap-Σ) ∘e ( inv-left-unit-law-Σ-is-contr ( is-contr-is-small-lmax l2 X) ( is-small-lmax l2 X)) ∘e ( equiv-precomp (inv-equiv (equiv-is-small (is-small-lmax l2 X))) A) ``` ## See also - In [`foundation.binary-type-duality`](foundation.binary-type-duality.md) we show that [binary relations](foundation.binary-relations.md) are equivalently described as [spans of types](foundation.spans.md).