# Computational identity types ```agda module foundation.computational-identity-types where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.function-extensionality open import foundation.strictly-right-unital-concatenation-identifications open import foundation.transport-along-identifications open import foundation.univalence open import foundation.universal-property-identity-systems open import foundation.universe-levels open import foundation.yoneda-identity-types open import foundation-core.cartesian-product-types open import foundation-core.contractible-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.retractions open import foundation-core.sections open import foundation-core.torsorial-type-families ``` </details> ## Idea The standard definition of [identity types](foundation-core.identity-types.md) has the limitation that many of the basic operations only satisfy algebraic laws _weakly_. On this page, we consider the {{#concept "computational identity types" Agda=computational-Id}} `x =ʲ y`, whose elements we call {{#concept "computational identifications" Agda=computational-Id}}. These are defined using the construction of the [strictly involutive identity types](foundation.strictly-involutive-identity-types.md): ```text (x =ⁱ y) := Σ (z : A) ((z = y) × (z = x)) ``` but using the [Yoneda identity types](foundation.yoneda-identity-types.md) (`_=ʸ_`) as the underlying identity types: ```text (x =ʸ y) := (z : A) → (z = x) → (z = y), ``` hence, their definition is ```text (x =ʲ y) := Σ (z : A) ((z =ʸ y) × (z =ʸ x)). ``` The Yoneda identity types are [equivalent](foundation-core.equivalences.md) to the standard identity types, but have a strictly associative and unital concatenation operation. We can leverage this and the strictness properties of the construction of the strictly involutive identity types to construct operations on the computational identity types that satisfy the strict algebraic laws - `(p ∙ʲ q) ∙ʲ r ≐ p ∙ʲ (q ∙ʲ r)` - `reflʲ ∙ʲ p ≐ p` or `p ∙ʲ reflʲ ≐ p` - `invʲ (invʲ p) ≐ p` - `invʲ reflʲ ≐ reflʲ`. While the last three equalities hold by the same computations as for the strictly involutive identity types using the fact that `invʸ reflʸ ≐ reflʸ`, strict associativity relies on the strict associativity of the underlying Yoneda identity types. See the file about strictly involutive identity types for further details on computations related to the last three equalities. In addition to these strict algebraic laws, we also define a recursion principle for the computational identity types that computes strictly. **Note.** The computational identity types do _not_ satisfy the strict laws - `reflʲ ∙ʲ p ≐ p` and `p ∙ʲ reflʲ ≐ p` simultaneously, - `invʲ p ∙ʲ p ≐ reflʲ`, or - `p ∙ʲ invʲ p ≐ reflʲ`, and they do not have a strict computation property for their induction principle. This boils down to the fact that the Yoneda identity types do not have a strict computation property for their induction principle, which is explained further there. ## Definition ```agda module _ {l : Level} {A : UU l} where computational-Id : (x y : A) → UU l computational-Id x y = Σ A (λ z → (z =ʸ y) × (z =ʸ x)) infix 6 _=ʲ_ _=ʲ_ : A → A → UU l (a =ʲ b) = computational-Id a b reflʲ : {x : A} → x =ʲ x reflʲ {x} = (x , reflʸ , reflʸ) ``` ## Properties ### The computational identity types are equivalent to the Yoneda identity types The computational identity types are equivalent to the Yoneda identity types, and similarly to the strictly involutive identity types, this equivalence is a strict [retraction](foundation-core.retractions.md) and preserves the reflexivities strictly. ```agda module _ {l : Level} {A : UU l} where computational-eq-yoneda-eq : {x y : A} → x =ʸ y → x =ʲ y computational-eq-yoneda-eq {x} f = (x , f , reflʸ) yoneda-eq-computational-eq : {x y : A} → x =ʲ y → x =ʸ y yoneda-eq-computational-eq (z , p , q) = invʸ q ∙ʸ p is-retraction-yoneda-eq-computational-eq : {x y : A} → is-retraction ( computational-eq-yoneda-eq) ( yoneda-eq-computational-eq {x} {y}) is-retraction-yoneda-eq-computational-eq f = refl is-section-yoneda-eq-computational-eq : {x y : A} → is-section ( computational-eq-yoneda-eq) ( yoneda-eq-computational-eq {x} {y}) is-section-yoneda-eq-computational-eq (z , p , q) = ind-yoneda-Id ( λ _ q → computational-eq-yoneda-eq (yoneda-eq-computational-eq (z , p , q)) = (z , p , q)) ( refl) ( q) is-equiv-computational-eq-yoneda-eq : {x y : A} → is-equiv (computational-eq-yoneda-eq {x} {y}) is-equiv-computational-eq-yoneda-eq = is-equiv-is-invertible ( yoneda-eq-computational-eq) ( is-section-yoneda-eq-computational-eq) ( is-retraction-yoneda-eq-computational-eq) is-equiv-yoneda-eq-computational-eq : {x y : A} → is-equiv (yoneda-eq-computational-eq {x} {y}) is-equiv-yoneda-eq-computational-eq = is-equiv-is-invertible ( computational-eq-yoneda-eq) ( is-retraction-yoneda-eq-computational-eq) ( is-section-yoneda-eq-computational-eq) equiv-computational-eq-yoneda-eq : {x y : A} → (x =ʸ y) ≃ (x =ʲ y) pr1 equiv-computational-eq-yoneda-eq = computational-eq-yoneda-eq pr2 equiv-computational-eq-yoneda-eq = is-equiv-computational-eq-yoneda-eq equiv-yoneda-eq-computational-eq : {x y : A} → (x =ʲ y) ≃ (x =ʸ y) pr1 equiv-yoneda-eq-computational-eq = yoneda-eq-computational-eq pr2 equiv-yoneda-eq-computational-eq = is-equiv-yoneda-eq-computational-eq ``` This equivalence preserves the reflexivity elements strictly in both directions. ```agda module _ {l : Level} {A : UU l} where preserves-refl-yoneda-eq-computational-eq : {x : A} → yoneda-eq-computational-eq (reflʲ {x = x}) = reflʸ preserves-refl-yoneda-eq-computational-eq = refl preserves-refl-computational-eq-yoneda-eq : {x : A} → computational-eq-yoneda-eq (reflʸ {x = x}) = reflʲ preserves-refl-computational-eq-yoneda-eq = refl ``` ### The computational identity types are equivalent to the standard identity types By the composite equivalence `(x = y) ≃ (x =ʸ y) ≃ (x =ʲ y)`, the computational identity types are equivalent to the standard identity types. Since each of these equivalences preserve the groupoid structure weakly, so does the composite. For the same reason, it preserves the reflexivities strictly. ```agda module _ {l : Level} {A : UU l} where computational-eq-eq : {x y : A} → x = y → x =ʲ y computational-eq-eq = computational-eq-yoneda-eq ∘ yoneda-eq-eq eq-computational-eq : {x y : A} → x =ʲ y → x = y eq-computational-eq = eq-yoneda-eq ∘ yoneda-eq-computational-eq equiv-computational-eq-eq : {x y : A} → (x = y) ≃ (x =ʲ y) equiv-computational-eq-eq = equiv-computational-eq-yoneda-eq ∘e equiv-yoneda-eq-eq equiv-eq-computational-eq : {x y : A} → (x =ʲ y) ≃ (x = y) equiv-eq-computational-eq = equiv-eq-yoneda-eq ∘e equiv-yoneda-eq-computational-eq is-retraction-eq-computational-eq : {x y : A} → is-retraction computational-eq-eq (eq-computational-eq {x} {y}) is-retraction-eq-computational-eq p = left-unit-right-strict-concat is-section-eq-computational-eq : {x y : A} → is-section computational-eq-eq (eq-computational-eq {x} {y}) is-section-eq-computational-eq (z , p , q) = ind-yoneda-Id ( λ _ q → computational-eq-eq (eq-computational-eq (z , p , q)) = (z , p , q)) ( eq-pair-eq-fiber (eq-pair (is-section-eq-yoneda-eq p) refl)) ( q) is-equiv-computational-eq-eq : {x y : A} → is-equiv (computational-eq-eq {x} {y}) is-equiv-computational-eq-eq = is-equiv-map-equiv equiv-computational-eq-eq is-equiv-eq-computational-eq : {x y : A} → is-equiv (eq-computational-eq {x} {y}) is-equiv-eq-computational-eq = is-equiv-map-equiv equiv-eq-computational-eq ``` This equivalence preserves the reflexivity elements strictly in both directions. ```agda module _ {l : Level} {A : UU l} where preserves-refl-computational-eq-eq : {x : A} → computational-eq-eq (refl {x = x}) = reflʲ preserves-refl-computational-eq-eq = refl preserves-refl-eq-computational-eq : {x : A} → eq-computational-eq (reflʲ {x = x}) = refl preserves-refl-eq-computational-eq = refl ``` ### Torsoriality of the computational identity types ```agda module _ {l : Level} {A : UU l} {x : A} where is-torsorial-computational-Id : is-torsorial (computational-Id x) is-torsorial-computational-Id = is-contr-equiv ( Σ A (x =_)) ( equiv-tot (λ y → equiv-eq-computational-eq {x = x} {y})) ( is-torsorial-Id x) ``` ### The dependent universal property of the computational identity types ```agda module _ {l : Level} {A : UU l} {x : A} where dependent-universal-property-identity-system-computational-Id : dependent-universal-property-identity-system ( computational-Id x) ( reflʲ) dependent-universal-property-identity-system-computational-Id = dependent-universal-property-identity-system-is-torsorial ( reflʲ) ( is-torsorial-computational-Id) ``` ### The induction principle for the computational identity types The computational identity types satisfy the induction principle of the identity types. This states that given a base point `x : A` and a family of types over the identity types based at `x`, `B : (y : A) (p : x =ʲ y) → UU l2`, then to construct a dependent function `f : (y : A) (p : x =ʲ y) → B y p` it suffices to define it at `f x reflʲ`. ```agda module _ {l1 l2 : Level} {A : UU l1} {x : A} (B : (y : A) (p : x =ʲ y) → UU l2) where ind-computational-Id : (b : B x reflʲ) {y : A} (p : x =ʲ y) → B y p ind-computational-Id b {y} = map-inv-is-equiv ( dependent-universal-property-identity-system-computational-Id B) ( b) ( y) compute-ind-computational-Id : (b : B x reflʲ) → ind-computational-Id b reflʲ = b compute-ind-computational-Id = is-section-map-inv-is-equiv ( dependent-universal-property-identity-system-computational-Id B) uniqueness-ind-computational-Id : (b : (y : A) (p : x =ʲ y) → B y p) → (λ y → ind-computational-Id (b x reflʲ) {y}) = b uniqueness-ind-computational-Id = is-retraction-map-inv-is-equiv ( dependent-universal-property-identity-system-computational-Id B) ``` ### The strict recursion principle for the computational identity types Using the fact that the recusion principles of both the Yoneda identity types and the strictly involutive identity types can be defined to compute strictly, we obtain a strictly computing recursion principle for the computational identity types as well. ```agda module _ {l1 l2 : Level} {A : UU l1} {x : A} {B : A → UU l2} where rec-computational-Id : (b : B x) {y : A} → x =ʲ y → B y rec-computational-Id b p = rec-yoneda-Id b (yoneda-eq-computational-eq p) compute-rec-computational-Id : (b : B x) → rec-computational-Id b reflʲ = b compute-rec-computational-Id b = refl uniqueness-rec-computational-Id : (b : (y : A) → x =ʲ y → B y) → (λ y → rec-computational-Id (b x reflʲ) {y}) = b uniqueness-rec-computational-Id b = ( inv ( uniqueness-ind-computational-Id ( λ y _ → B y) ( λ y → rec-computational-Id (b x reflʲ)))) ∙ ( uniqueness-ind-computational-Id (λ y _ → B y) b) ``` ## Structure The computational identity types form a groupoidal structure on types. This structure satisfies the following algebraic laws strictly - `(p ∙ʲ q) ∙ʲ r ≐ p ∙ʲ (q ∙ʲ r)` - `reflʲ ∙ʲ p ≐ p` or `p ∙ʲ reflʲ ≐ p` - `invʲ (invʲ p) ≐ p` - `invʲ reflʲ ≐ reflʲ`. ### Inverting computational identifications The construction and computations are the same as for the strictly involutive identity types. Thus, the inversion operation is defined by swapping the positions of the two Yoneda identifications ```text invʲ := (z , p , q) ↦ (z , q , p). ``` ```agda module _ {l : Level} {A : UU l} where invʲ : {x y : A} → x =ʲ y → y =ʲ x invʲ (z , p , q) = (z , q , p) compute-inv-refl-computational-Id : {x : A} → invʲ (reflʲ {x = x}) = reflʲ compute-inv-refl-computational-Id = refl inv-inv-computational-Id : {x y : A} (p : x =ʲ y) → invʲ (invʲ p) = p inv-inv-computational-Id p = refl ``` The inversion operation on computational identifications corresponds to the standard inversion operation on identifications: ```agda module _ {l : Level} {A : UU l} {x y : A} where preserves-inv-computational-eq-eq : (p : x = y) → computational-eq-eq (inv p) = invʲ (computational-eq-eq p) preserves-inv-computational-eq-eq refl = refl preserves-inv-eq-computational-eq : (p : x =ʲ y) → eq-computational-eq (invʲ p) = inv (eq-computational-eq p) preserves-inv-eq-computational-eq (z , f , g) = ( ap (g y) (left-unit-right-strict-concat)) ∙ ( distributive-inv-Id-yoneda-Id g f) ∙ ( ap (λ r → inv (f x r)) (inv left-unit-right-strict-concat)) ``` ### The concatenation operations on computational identifications There is both a strictly left unital and a strictly right unital concatenation operation, while both are strictly associative. The strict one-sided unitality follows in both cases from the strict right unitality of the concatenation operation on the Yoneda identifications, following the same computation as for the strictly involutive identity types. For associativity on the other hand, we must use the strict associativity of the Yoneda identity types. We will write out the explicit computation later. **Observation.** Since the concatenation operations are strictly associative, every string of concatenations containing reflexivities will reduce aside from possibly when the reflexivity appears all the way to the right or left in the string. #### The strictly left unital concatenation operation The strictly left unital concatenation operation is constructed the same way as the strictly left unital concatenation operation for the strictly involutive identity types ```text (w , p , q) ∙ʲ (w' , p' , q') := (w' , p' , q' ∙ʸ invʸ p ∙ʸ q) ``` ```agda module _ {l : Level} {A : UU l} where infixl 15 _∙ʲ_ _∙ʲ_ : {x y z : A} → x =ʲ y → y =ʲ z → x =ʲ z (w , p , q) ∙ʲ (w' , p' , q') = (w' , p' , q' ∙ʸ invʸ p ∙ʸ q) concat-computational-Id : {x y : A} → x =ʲ y → (z : A) → y =ʲ z → x =ʲ z concat-computational-Id p z q = p ∙ʲ q concat-computational-Id' : (x : A) {y z : A} → y =ʲ z → x =ʲ y → x =ʲ z concat-computational-Id' x q p = p ∙ʲ q ``` The strictly left unital concatenation operation on computational identifications corresponds to the strictly left unital concatenation operation on standard identifications. ```agda module _ {l : Level} {A : UU l} {x y z : A} where preserves-concat-computational-eq-eq : (p : x = y) (q : y = z) → computational-eq-eq (p ∙ q) = computational-eq-eq p ∙ʲ computational-eq-eq q preserves-concat-computational-eq-eq refl q = refl preserves-concat-eq-computational-eq : (p : x =ʲ y) (q : y =ʲ z) → eq-computational-eq (p ∙ʲ q) = eq-computational-eq p ∙ eq-computational-eq q preserves-concat-eq-computational-eq (w , f , g) (w' , f' , g') = ( ap (f' x) left-unit-right-strict-concat) ∙ ( ap ( f' x) ( ( ap ( inv) ( commutative-preconcatr-Id-yoneda-Id ( g) ( g' w' refl) ( inv (f w refl)))) ∙ ( ( distributive-inv-right-strict-concat ( g' w' refl) ( g y (inv (f w refl)))) ∙ ( ( ap ( _∙ᵣ inv (g' w' refl)) ( inv-distributive-inv-Id-yoneda-Id f g)) ∙ ( eq-concat-right-strict-concat ( f x (inv (g w refl))) ( inv (g' w' refl)))))) ∙ ( commutative-preconcat-Id-yoneda-Id f' ( f x (inv (g w refl))) ( inv (g' w' refl)))) ∙ ( ap-binary ( _∙_) ( ap (f x) (inv left-unit-right-strict-concat)) ( ap (f' y) (inv left-unit-right-strict-concat))) ``` #### The strictly right unital concatenation operation ```agda module _ {l : Level} {A : UU l} where infixl 15 _∙ᵣʲ_ _∙ᵣʲ_ : {x y z : A} → x =ʲ y → y =ʲ z → x =ʲ z (w , p , q) ∙ᵣʲ (w' , p' , q') = (w , p ∙ʸ invʸ q' ∙ʸ p' , q) right-strict-concat-computational-Id : {x y : A} → x =ʲ y → (z : A) → y =ʲ z → x =ʲ z right-strict-concat-computational-Id p z q = p ∙ᵣʲ q right-strict-concat-computational-Id' : (x : A) {y z : A} → y =ʲ z → x =ʲ y → x =ʲ z right-strict-concat-computational-Id' x q p = p ∙ᵣʲ q ``` The strictly right unital concatenation operation on computational identifications corresponds to the strictly right unital concatenation operation on standard identifications. ```agda module _ {l : Level} {A : UU l} {x y z : A} where preserves-right-strict-concat-computational-eq-eq : (p : x = y) (q : y = z) → computational-eq-eq (p ∙ᵣ q) = computational-eq-eq p ∙ᵣʲ computational-eq-eq q preserves-right-strict-concat-computational-eq-eq p refl = refl preserves-right-strict-concat-eq-computational-eq : (p : x =ʲ y) (q : y =ʲ z) → eq-computational-eq (p ∙ᵣʲ q) = eq-computational-eq p ∙ᵣ eq-computational-eq q preserves-right-strict-concat-eq-computational-eq (w , f , g) (w' , f' , g') = ( ap ( λ r → f' x (f x r ∙ᵣ inv (g' w' refl))) ( left-unit-right-strict-concat)) ∙ ( commutative-preconcatr-Id-yoneda-Id ( f') ( f x (inv (g w refl))) ( inv (g' w' refl))) ∙ ( ap-binary ( _∙ᵣ_) ( ap (f x) (inv left-unit-right-strict-concat)) ( ap (f' y) (inv left-unit-right-strict-concat))) ``` ### The groupoidal laws for the computational identity types #### The groupoidal laws for the strictly left unital concatenation operation To see that `_∙ʲ_` is strictly associative, we unfold both `(P ∙ʲ Q) ∙ʲ R` and `P ∙ʲ (Q ∙ʲ R)` and observe that it follows from the strict associativity of `_∙ʸ_`: ```text (P ∙ʲ Q) ∙ʲ R ≐ ((u , p , p') ∙ʲ (v , q , q')) ∙ʲ (w , r , r') ≐ ((v , q , (q' ∙ʸ invʸ p) ∙ʸ p')) ∙ʲ (w , r , r') ≐ (w , r , (r' ∙ʸ invʸ q) ∙ʸ ((q' ∙ʸ invʸ p) ∙ʸ p')) ≐ (w , r , (((r' ∙ʸ invʸ q) ∙ʸ q') ∙ʸ invʸ p) ∙ʸ p') ≐ (u , p , p') ∙ʲ ((w , r , (r' ∙ʸ invʸ q) ∙ʸ q')) ≐ (u , p , p') ∙ʲ ((v , q , q') ∙ʲ (w , r , r')) ≐ P ∙ʲ (Q ∙ʲ R). ``` ```agda module _ {l : Level} {A : UU l} {x y z w : A} where assoc-concat-computational-Id : (p : x =ʲ y) (q : y =ʲ z) (r : z =ʲ w) → (p ∙ʲ q) ∙ʲ r = p ∙ʲ (q ∙ʲ r) assoc-concat-computational-Id p q r = refl module _ {l : Level} {A : UU l} {x y : A} where left-unit-concat-computational-Id : {p : x =ʲ y} → reflʲ ∙ʲ p = p left-unit-concat-computational-Id = refl right-unit-concat-computational-Id : {p : x =ʲ y} → p ∙ʲ reflʲ = p right-unit-concat-computational-Id {z , p , q} = ind-yoneda-Id ( λ _ p → (z , p , q) ∙ʲ reflʲ = (z , p , q)) ( refl) ( p) left-inv-concat-computational-Id : (p : x =ʲ y) → invʲ p ∙ʲ p = reflʲ left-inv-concat-computational-Id (z , p , q) = ind-yoneda-Id ( λ _ p → ( invʲ (z , p , q) ∙ʲ (z , p , q)) = ( reflʲ)) ( eq-pair-eq-fiber (eq-pair-eq-fiber (right-inv-yoneda-Id q))) ( p) right-inv-concat-computational-Id : (p : x =ʲ y) → p ∙ʲ invʲ p = reflʲ right-inv-concat-computational-Id (z , p , q) = ind-yoneda-Id ( λ _ q → ( (z , p , q) ∙ʲ invʲ (z , p , q)) = ( reflʲ)) ( eq-pair-eq-fiber (eq-pair-eq-fiber (right-inv-yoneda-Id p))) ( q) distributive-inv-concat-computational-Id : (p : x =ʲ y) {z : A} (q : y =ʲ z) → invʲ (p ∙ʲ q) = invʲ q ∙ʲ invʲ p distributive-inv-concat-computational-Id p = ind-computational-Id ( λ _ q → invʲ (p ∙ʲ q) = invʲ q ∙ʲ invʲ p) ( ap invʲ (right-unit-concat-computational-Id)) ``` #### The groupoidal laws for the strictly right unital concatenation operation Associativity for the strictly right unital concatenation operation follows from a similar computation to the one for the strictly left unital concatenation operation. ```agda module _ {l : Level} {A : UU l} where assoc-right-strict-concat-computational-Id : {x y z w : A} (p : x =ʲ y) (q : y =ʲ z) (r : z =ʲ w) → (p ∙ᵣʲ q) ∙ᵣʲ r = p ∙ᵣʲ (q ∙ᵣʲ r) assoc-right-strict-concat-computational-Id p q r = refl module _ {l : Level} {A : UU l} {x y : A} where right-unit-right-strict-concat-computational-Id : {p : x =ʲ y} → p ∙ᵣʲ reflʲ = p right-unit-right-strict-concat-computational-Id = refl left-unit-right-strict-concat-computational-Id : {p : x =ʲ y} → reflʲ ∙ᵣʲ p = p left-unit-right-strict-concat-computational-Id {z , p , q} = ind-yoneda-Id (λ _ q → reflʲ ∙ᵣʲ (z , p , q) = (z , p , q)) refl q left-inv-right-strict-concat-computational-Id : (p : x =ʲ y) → invʲ p ∙ᵣʲ p = reflʲ left-inv-right-strict-concat-computational-Id (z , p , q) = ind-yoneda-Id ( λ _ p → invʲ (z , p , q) ∙ᵣʲ (z , p , q) = reflʲ) ( eq-pair-eq-fiber (eq-pair (right-inv-yoneda-Id q) refl)) ( p) right-inv-right-strict-concat-computational-Id : (p : x =ʲ y) → p ∙ᵣʲ invʲ p = reflʲ right-inv-right-strict-concat-computational-Id (z , p , q) = ind-yoneda-Id ( λ _ q → (z , p , q) ∙ᵣʲ invʲ (z , p , q) = reflʲ) ( eq-pair-eq-fiber (eq-pair (right-inv-yoneda-Id p) refl)) ( q) module _ {l : Level} {A : UU l} {x y : A} where distributive-inv-right-strict-concat-computational-Id : (p : x =ʲ y) {z : A} (q : y =ʲ z) → invʲ (p ∙ᵣʲ q) = invʲ q ∙ᵣʲ invʲ p distributive-inv-right-strict-concat-computational-Id p = ind-computational-Id ( λ _ q → invʲ (p ∙ᵣʲ q) = invʲ q ∙ᵣʲ invʲ p) ( inv left-unit-right-strict-concat-computational-Id) ``` ## Operations We can define a range of basic operations on computational identifications that all enjoy strict computational properties. ### Action of functions on computational identifications ```agda module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where eq-ap-computational-Id : {x y : A} → x =ʲ y → f x = f y eq-ap-computational-Id = ap f ∘ eq-computational-eq ap-computational-Id : {x y : A} → x =ʲ y → f x =ʲ f y ap-computational-Id = computational-eq-yoneda-eq ∘ ap-yoneda-Id f ∘ yoneda-eq-computational-eq compute-ap-refl-computational-Id : {x : A} → ap-computational-Id (reflʲ {x = x}) = reflʲ compute-ap-refl-computational-Id = refl module _ {l1 : Level} {A : UU l1} where compute-ap-id-computational-Id : {x y : A} (p : x =ʲ y) → ap-computational-Id id p = p compute-ap-id-computational-Id p = ( ap ( computational-eq-yoneda-eq) ( compute-ap-id-yoneda-Id (yoneda-eq-computational-eq p))) ∙ ( is-section-yoneda-eq-computational-eq p) ``` ### Transport along computational identifications ```agda module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) where tr-computational-Id : {x y : A} → x =ʲ y → B x → B y tr-computational-Id = tr B ∘ eq-computational-eq compute-tr-refl-computational-Id : {x : A} → tr-computational-Id (reflʲ {x = x}) = id compute-tr-refl-computational-Id = refl ``` ### Function extensionality with respect to computational identifications ```agda module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {f g : (x : A) → B x} where htpy-computational-eq : f =ʲ g → f ~ g htpy-computational-eq = htpy-eq ∘ eq-computational-eq computational-eq-htpy : f ~ g → f =ʲ g computational-eq-htpy = computational-eq-eq ∘ eq-htpy equiv-htpy-computational-eq : (f =ʲ g) ≃ (f ~ g) equiv-htpy-computational-eq = equiv-funext ∘e equiv-eq-computational-eq equiv-computational-eq-htpy : (f ~ g) ≃ (f =ʲ g) equiv-computational-eq-htpy = equiv-computational-eq-eq ∘e equiv-eq-htpy funext-computational-Id : is-equiv htpy-computational-eq funext-computational-Id = is-equiv-map-equiv equiv-htpy-computational-eq ``` ### Univalence with respect to computational identifications ```agda module _ {l1 : Level} {A B : UU l1} where map-computational-eq : A =ʲ B → A → B map-computational-eq = map-eq ∘ eq-computational-eq equiv-computational-eq : A =ʲ B → A ≃ B equiv-computational-eq = equiv-eq ∘ eq-computational-eq computational-eq-equiv : A ≃ B → A =ʲ B computational-eq-equiv = computational-eq-eq ∘ eq-equiv equiv-equiv-computational-eq : (A =ʲ B) ≃ (A ≃ B) equiv-equiv-computational-eq = equiv-univalence ∘e equiv-eq-computational-eq is-equiv-equiv-computational-eq : is-equiv equiv-computational-eq is-equiv-equiv-computational-eq = is-equiv-map-equiv equiv-equiv-computational-eq equiv-computational-eq-equiv : (A ≃ B) ≃ (A =ʲ B) equiv-computational-eq-equiv = equiv-computational-eq-eq ∘e equiv-eq-equiv A B is-equiv-computational-eq-equiv : is-equiv computational-eq-equiv is-equiv-computational-eq-equiv = is-equiv-map-equiv equiv-computational-eq-equiv ``` ## See also - [The strictly involutive identity types](foundation.strictly-involutive-identity-types.md) - [The Yoneda identity types](foundation.yoneda-identity-types.md)