# Partitions ```agda module foundation.partitions where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.conjunction open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.equivalences open import foundation.existential-quantification open import foundation.fiber-inclusions open import foundation.fundamental-theorem-of-identity-types open import foundation.inhabited-subtypes open import foundation.inhabited-types open import foundation.locally-small-types open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.sigma-decompositions open import foundation.small-types open import foundation.subtype-identity-principle open import foundation.subtypes open import foundation.surjective-maps open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.propositions open import foundation-core.sets open import foundation-core.torsorial-type-families ``` </details> ## Idea A partition of a type `A` is a subset `P` of the type of inhabited subsets of `A` such that for each `a : A` the type ```text Σ (Q : inhabited-subtype (A)), P(Q) × Q(a) ``` is contractible. In other words, it is a collection `P` of inhabited subtypes of `A` such that each element of `A` is in a unique inhabited subtype in `P`. ## Definition ```agda is-partition-Prop : {l1 l2 l3 : Level} {A : UU l1} (P : subtype l3 (inhabited-subtype l2 A)) → Prop (l1 ⊔ lsuc l2 ⊔ l3) is-partition-Prop {l1} {l2} {l3} {A} P = Π-Prop A ( λ x → is-contr-Prop ( Σ ( type-subtype P) ( λ Q → is-in-inhabited-subtype (inclusion-subtype P Q) x))) is-partition : {l1 l2 l3 : Level} {A : UU l1} (P : subtype l3 (inhabited-subtype l2 A)) → UU (l1 ⊔ lsuc l2 ⊔ l3) is-partition P = type-Prop (is-partition-Prop P) partition : {l1 : Level} (l2 l3 : Level) → UU l1 → UU (l1 ⊔ lsuc l2 ⊔ lsuc l3) partition {l1} l2 l3 A = type-subtype (is-partition-Prop {l1} {l2} {l3} {A}) module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) where subtype-partition : subtype l3 (inhabited-subtype l2 A) subtype-partition = pr1 P is-partition-subtype-partition : is-partition subtype-partition is-partition-subtype-partition = pr2 P is-block-partition : inhabited-subtype l2 A → UU l3 is-block-partition = is-in-subtype subtype-partition is-prop-is-block-partition : (Q : inhabited-subtype l2 A) → is-prop (is-block-partition Q) is-prop-is-block-partition = is-prop-is-in-subtype subtype-partition ``` We introduce the type of blocks of a partition. However, we will soon be able to reduce the universe level of this type. Therefore we call this type of blocks `large`. ```agda block-partition-Large-Type : UU (l1 ⊔ lsuc l2 ⊔ l3) block-partition-Large-Type = type-subtype subtype-partition inhabited-subtype-block-partition-Large-Type : block-partition-Large-Type → inhabited-subtype l2 A inhabited-subtype-block-partition-Large-Type = inclusion-subtype subtype-partition is-emb-inhabited-subtype-block-partition-Large-Type : is-emb inhabited-subtype-block-partition-Large-Type is-emb-inhabited-subtype-block-partition-Large-Type = is-emb-inclusion-subtype subtype-partition emb-inhabited-subtype-block-partition-Large-Type : block-partition-Large-Type ↪ inhabited-subtype l2 A emb-inhabited-subtype-block-partition-Large-Type = emb-subtype subtype-partition is-block-inhabited-subtype-block-partition-Large-Type : (B : block-partition-Large-Type) → is-block-partition (inhabited-subtype-block-partition-Large-Type B) is-block-inhabited-subtype-block-partition-Large-Type = is-in-subtype-inclusion-subtype subtype-partition subtype-block-partition-Large-Type : block-partition-Large-Type → subtype l2 A subtype-block-partition-Large-Type = subtype-inhabited-subtype ∘ inhabited-subtype-block-partition-Large-Type is-inhabited-subtype-block-partition-Large-Type : (B : block-partition-Large-Type) → is-inhabited-subtype (subtype-block-partition-Large-Type B) is-inhabited-subtype-block-partition-Large-Type B = is-inhabited-subtype-inhabited-subtype ( inhabited-subtype-block-partition-Large-Type B) type-block-partition-Large-Type : block-partition-Large-Type → UU (l1 ⊔ l2) type-block-partition-Large-Type Q = type-inhabited-subtype (inhabited-subtype-block-partition-Large-Type Q) inhabited-type-block-partition-Large-Type : block-partition-Large-Type → Inhabited-Type (l1 ⊔ l2) inhabited-type-block-partition-Large-Type Q = inhabited-type-inhabited-subtype ( inhabited-subtype-block-partition-Large-Type Q) is-in-block-partition-Large-Type : block-partition-Large-Type → A → UU l2 is-in-block-partition-Large-Type Q = is-in-inhabited-subtype (inhabited-subtype-block-partition-Large-Type Q) is-prop-is-in-block-partition-Large-Type : (Q : block-partition-Large-Type) (a : A) → is-prop (is-in-block-partition-Large-Type Q a) is-prop-is-in-block-partition-Large-Type Q = is-prop-is-in-inhabited-subtype ( inhabited-subtype-block-partition-Large-Type Q) large-block-element-partition : A → block-partition-Large-Type large-block-element-partition a = pr1 (center (is-partition-subtype-partition a)) is-surjective-large-block-element-partition : is-surjective large-block-element-partition is-surjective-large-block-element-partition B = apply-universal-property-trunc-Prop ( is-inhabited-subtype-block-partition-Large-Type B) ( trunc-Prop (fiber large-block-element-partition B)) ( λ (a , u) → unit-trunc-Prop ( pair a ( eq-type-subtype ( subtype-partition) ( ap pr1 ( ap ( inclusion-subtype ( λ Q → subtype-inhabited-subtype (pr1 Q) a)) ( contraction ( is-partition-subtype-partition a) ( pair B u))))))) is-locally-small-block-partition-Large-Type : is-locally-small (l1 ⊔ l2) block-partition-Large-Type is-locally-small-block-partition-Large-Type = is-locally-small-type-subtype ( subtype-partition) ( is-locally-small-inhabited-subtype is-small') is-small-block-partition-Large-Type : is-small (l1 ⊔ l2) block-partition-Large-Type is-small-block-partition-Large-Type = is-small-is-surjective ( is-surjective-large-block-element-partition) ( is-small-lmax l2 A) ( is-locally-small-block-partition-Large-Type) ``` ### The (small) type of blocks of a partition We will now introduce the type of blocks of a partition, and show that the type of blocks containing a fixed element `a` is contractible. Once this is done, we will have no more use for the large type of blocks of a partition. ```agda block-partition : UU (l1 ⊔ l2) block-partition = type-is-small is-small-block-partition-Large-Type compute-block-partition : block-partition-Large-Type ≃ block-partition compute-block-partition = equiv-is-small is-small-block-partition-Large-Type map-compute-block-partition : block-partition-Large-Type → block-partition map-compute-block-partition = map-equiv compute-block-partition make-block-partition : (Q : inhabited-subtype l2 A) → is-block-partition Q → block-partition make-block-partition Q H = map-compute-block-partition (pair Q H) map-inv-compute-block-partition : block-partition → block-partition-Large-Type map-inv-compute-block-partition = map-inv-equiv compute-block-partition is-section-map-inv-compute-block-partition : ( map-compute-block-partition ∘ map-inv-compute-block-partition) ~ id is-section-map-inv-compute-block-partition = is-section-map-inv-equiv compute-block-partition is-retraction-map-inv-compute-block-partition : ( map-inv-compute-block-partition ∘ map-compute-block-partition) ~ id is-retraction-map-inv-compute-block-partition = is-retraction-map-inv-equiv compute-block-partition inhabited-subtype-block-partition : block-partition → inhabited-subtype l2 A inhabited-subtype-block-partition = inhabited-subtype-block-partition-Large-Type ∘ map-inv-compute-block-partition is-emb-inhabited-subtype-block-partition : is-emb inhabited-subtype-block-partition is-emb-inhabited-subtype-block-partition = is-emb-comp ( inhabited-subtype-block-partition-Large-Type) ( map-inv-compute-block-partition) ( is-emb-inhabited-subtype-block-partition-Large-Type) ( is-emb-is-equiv (is-equiv-map-inv-equiv compute-block-partition)) emb-inhabited-subtype-block-partition : block-partition ↪ inhabited-subtype l2 A pr1 emb-inhabited-subtype-block-partition = inhabited-subtype-block-partition pr2 emb-inhabited-subtype-block-partition = is-emb-inhabited-subtype-block-partition is-block-inhabited-subtype-block-partition : (B : block-partition) → is-block-partition (inhabited-subtype-block-partition B) is-block-inhabited-subtype-block-partition B = is-block-inhabited-subtype-block-partition-Large-Type ( map-inv-compute-block-partition B) subtype-block-partition : block-partition → subtype l2 A subtype-block-partition = subtype-block-partition-Large-Type ∘ map-inv-compute-block-partition inhabited-type-block-partition : block-partition → Inhabited-Type (l1 ⊔ l2) inhabited-type-block-partition B = inhabited-type-block-partition-Large-Type ( map-inv-compute-block-partition B) is-inhabited-subtype-block-partition : (B : block-partition) → is-inhabited-subtype (subtype-block-partition B) is-inhabited-subtype-block-partition B = is-inhabited-subtype-block-partition-Large-Type ( map-inv-compute-block-partition B) type-block-partition : block-partition → UU (l1 ⊔ l2) type-block-partition B = type-block-partition-Large-Type (map-inv-compute-block-partition B) is-in-block-partition : (B : block-partition) → A → UU l2 is-in-block-partition B = is-in-block-partition-Large-Type (map-inv-compute-block-partition B) is-prop-is-in-block-partition : (B : block-partition) (a : A) → is-prop (is-in-block-partition B a) is-prop-is-in-block-partition B = is-prop-is-in-block-partition-Large-Type ( map-inv-compute-block-partition B) abstract compute-is-in-block-partition : (B : inhabited-subtype l2 A) (H : is-block-partition B) (x : A) → is-in-inhabited-subtype B x ≃ is-in-block-partition (make-block-partition B H) x compute-is-in-block-partition B H x = equiv-tr ( λ C → is-in-block-partition-Large-Type C x) ( inv (is-retraction-map-inv-compute-block-partition (B , H))) abstract make-is-in-block-partition : (B : inhabited-subtype l2 A) (H : is-block-partition B) (x : A) → is-in-inhabited-subtype B x → is-in-block-partition (make-block-partition B H) x make-is-in-block-partition B H x K = map-equiv (compute-is-in-block-partition B H x) K block-containing-element-partition : A → UU (l1 ⊔ l2) block-containing-element-partition a = Σ block-partition (λ B → is-in-block-partition B a) abstract is-contr-block-containing-element-partition : (a : A) → is-contr (block-containing-element-partition a) is-contr-block-containing-element-partition a = is-contr-equiv' ( Σ block-partition-Large-Type ( λ B → is-in-block-partition-Large-Type B a)) ( equiv-Σ ( λ B → is-in-block-partition B a) ( compute-block-partition) ( λ B → equiv-tr ( λ C → is-in-block-partition-Large-Type C a) ( inv (is-retraction-map-inv-compute-block-partition B)))) ( is-partition-subtype-partition a) center-block-containing-element-partition : (a : A) → block-containing-element-partition a center-block-containing-element-partition a = center (is-contr-block-containing-element-partition a) class-partition : A → block-partition class-partition a = pr1 (center-block-containing-element-partition a) is-block-class-partition : (a : A) → is-block-partition (inhabited-subtype-block-partition (class-partition a)) is-block-class-partition a = is-block-inhabited-subtype-block-partition (class-partition a) is-in-block-class-partition : (a : A) → is-in-block-partition (class-partition a) a is-in-block-class-partition a = pr2 (center-block-containing-element-partition a) compute-base-type-partition : Σ block-partition type-block-partition ≃ A compute-base-type-partition = ( right-unit-law-Σ-is-contr ( λ x → is-contr-block-containing-element-partition x)) ∘e ( equiv-left-swap-Σ) ``` ## Properties ### Characterizing equality of partitions ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) where has-same-blocks-partition : {l4 : Level} (Q : partition l2 l4 A) → UU (l1 ⊔ lsuc l2 ⊔ l3 ⊔ l4) has-same-blocks-partition Q = has-same-elements-subtype (subtype-partition P) (subtype-partition Q) refl-has-same-blocks-partition : has-same-blocks-partition P refl-has-same-blocks-partition = refl-has-same-elements-subtype (subtype-partition P) extensionality-partition : (Q : partition l2 l3 A) → (P = Q) ≃ has-same-blocks-partition Q extensionality-partition = extensionality-type-subtype ( is-partition-Prop) ( is-partition-subtype-partition P) ( refl-has-same-elements-subtype (subtype-partition P)) ( extensionality-subtype (subtype-partition P)) eq-has-same-blocks-partition : (Q : partition l2 l3 A) → has-same-blocks-partition Q → P = Q eq-has-same-blocks-partition Q = map-inv-equiv (extensionality-partition Q) ``` ### Characterizing equality of blocks of partitions ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) (B : block-partition P) where has-same-elements-block-partition-Prop : block-partition P → Prop (l1 ⊔ l2) has-same-elements-block-partition-Prop C = has-same-elements-inhabited-subtype-Prop ( inhabited-subtype-block-partition P B) ( inhabited-subtype-block-partition P C) has-same-elements-block-partition : block-partition P → UU (l1 ⊔ l2) has-same-elements-block-partition C = has-same-elements-inhabited-subtype ( inhabited-subtype-block-partition P B) ( inhabited-subtype-block-partition P C) is-prop-has-same-elements-block-partition : (C : block-partition P) → is-prop (has-same-elements-block-partition C) is-prop-has-same-elements-block-partition C = is-prop-has-same-elements-inhabited-subtype ( inhabited-subtype-block-partition P B) ( inhabited-subtype-block-partition P C) refl-has-same-elements-block-partition : has-same-elements-block-partition B refl-has-same-elements-block-partition = refl-has-same-elements-inhabited-subtype ( inhabited-subtype-block-partition P B) abstract is-torsorial-has-same-elements-block-partition : is-torsorial has-same-elements-block-partition is-torsorial-has-same-elements-block-partition = is-contr-equiv' ( Σ ( block-partition P) ( λ C → inhabited-subtype-block-partition P B = inhabited-subtype-block-partition P C)) ( equiv-tot ( λ C → extensionality-inhabited-subtype ( inhabited-subtype-block-partition P B) ( inhabited-subtype-block-partition P C))) ( fundamental-theorem-id' ( λ C → ap (inhabited-subtype-block-partition P)) ( is-emb-inhabited-subtype-block-partition P B)) has-same-elements-eq-block-partition : (C : block-partition P) → (B = C) → has-same-elements-block-partition C has-same-elements-eq-block-partition .B refl = refl-has-same-elements-block-partition is-equiv-has-same-elements-eq-block-partition : (C : block-partition P) → is-equiv (has-same-elements-eq-block-partition C) is-equiv-has-same-elements-eq-block-partition = fundamental-theorem-id is-torsorial-has-same-elements-block-partition has-same-elements-eq-block-partition extensionality-block-partition : (C : block-partition P) → (B = C) ≃ has-same-elements-block-partition C pr1 (extensionality-block-partition C) = has-same-elements-eq-block-partition C pr2 (extensionality-block-partition C) = is-equiv-has-same-elements-eq-block-partition C eq-has-same-elements-block-partition : (C : block-partition P) → has-same-elements-block-partition C → B = C eq-has-same-elements-block-partition C = map-inv-equiv (extensionality-block-partition C) ``` ### The type of blocks of a partition is a set ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) where is-set-block-partition : is-set (block-partition P) is-set-block-partition B C = is-prop-equiv ( extensionality-block-partition P B C) ( is-prop-has-same-elements-block-partition P B C) block-partition-Set : Set (l1 ⊔ l2) pr1 block-partition-Set = block-partition P pr2 block-partition-Set = is-set-block-partition ``` ### The inclusion of a block into the base type of a partition is an embedding ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) where emb-inclusion-block-partition : (B : block-partition P) → type-block-partition P B ↪ A emb-inclusion-block-partition B = comp-emb ( emb-equiv (compute-base-type-partition P)) ( emb-fiber-inclusion ( type-block-partition P) ( is-set-block-partition P) ( B)) ``` ### Two blocks of a partition are equal if they share a common element ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) (B : block-partition P) where share-common-element-block-partition-Prop : (C : block-partition P) → Prop (l1 ⊔ l2) share-common-element-block-partition-Prop C = ∃ A (λ a → subtype-block-partition P B a ∧ subtype-block-partition P C a) share-common-element-block-partition : (C : block-partition P) → UU (l1 ⊔ l2) share-common-element-block-partition C = type-Prop (share-common-element-block-partition-Prop C) eq-share-common-element-block-partition : (C : block-partition P) → share-common-element-block-partition C → B = C eq-share-common-element-block-partition C H = apply-universal-property-trunc-Prop H ( Id-Prop (block-partition-Set P) B C) ( λ (a , K , L) → ap ( pr1) ( eq-is-contr ( is-contr-block-containing-element-partition P a) { B , K} { C , L})) ``` ### The condition of being a partition is equivalent to the condition that the total space of all blocks is equivalent to the base type ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) where compute-total-block-partition : Σ (block-partition P) (type-block-partition P) ≃ A compute-total-block-partition = ( right-unit-law-Σ-is-contr ( is-contr-block-containing-element-partition P)) ∘e ( equiv-left-swap-Σ) map-compute-total-block-partition : Σ (block-partition P) (type-block-partition P) → A map-compute-total-block-partition = map-equiv compute-total-block-partition ``` ### The type of partitions of `A` is equivalent to the type of set-indexed Σ-decompositions of `A` #### The set-indexed Σ-decomposition obtained from a partition ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition l2 l3 A) where set-indexed-Σ-decomposition-partition : Set-Indexed-Σ-Decomposition (l1 ⊔ l2) (l1 ⊔ l2) A pr1 set-indexed-Σ-decomposition-partition = block-partition-Set P pr1 (pr2 set-indexed-Σ-decomposition-partition) = inhabited-type-block-partition P pr2 (pr2 set-indexed-Σ-decomposition-partition) = inv-equiv (compute-total-block-partition P) ``` #### The partition obtained from a set-indexed Σ-decomposition ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (D : Set-Indexed-Σ-Decomposition l2 l3 A) where is-block-partition-Set-Indexed-Σ-Decomposition : {l4 : Level} → inhabited-subtype l4 A → UU (l1 ⊔ l2 ⊔ l4) is-block-partition-Set-Indexed-Σ-Decomposition Q = Σ ( indexing-type-Set-Indexed-Σ-Decomposition D) ( λ i → (x : A) → ( is-in-inhabited-subtype Q x) ≃ ( index-Set-Indexed-Σ-Decomposition D x = i)) is-prop-is-block-partition-Set-Indexed-Σ-Decomposition : {l4 : Level} (Q : inhabited-subtype l4 A) → is-prop (is-block-partition-Set-Indexed-Σ-Decomposition Q) is-prop-is-block-partition-Set-Indexed-Σ-Decomposition Q = apply-universal-property-trunc-Prop ( is-inhabited-subtype-inhabited-subtype Q) ( is-prop-Prop (is-block-partition-Set-Indexed-Σ-Decomposition Q)) ( λ (a , q) → is-prop-all-elements-equal ( λ (i , H) (j , K) → eq-type-subtype ( λ u → Π-Prop A ( λ x → equiv-Prop ( subtype-inhabited-subtype Q x) ( Id-Prop ( indexing-set-Set-Indexed-Σ-Decomposition D) ( pr1 ( map-matching-correspondence-Set-Indexed-Σ-Decomposition D x)) ( u)))) ( inv (map-equiv (H a) q) ∙ map-equiv (K a) q))) subtype-partition-Set-Indexed-Σ-Decomposition : {l4 : Level} → subtype (l1 ⊔ l2 ⊔ l4) (inhabited-subtype l4 A) pr1 (subtype-partition-Set-Indexed-Σ-Decomposition Q) = is-block-partition-Set-Indexed-Σ-Decomposition Q pr2 (subtype-partition-Set-Indexed-Σ-Decomposition Q) = is-prop-is-block-partition-Set-Indexed-Σ-Decomposition Q abstract is-partition-subtype-partition-Set-Indexed-Σ-Decomposition : is-partition (subtype-partition-Set-Indexed-Σ-Decomposition {l2}) is-partition-subtype-partition-Set-Indexed-Σ-Decomposition a = is-contr-equiv ( Σ ( inhabited-subtype l2 A) ( has-same-elements-inhabited-subtype ( pair ( λ x → Id-Prop ( indexing-set-Set-Indexed-Σ-Decomposition D) ( index-Set-Indexed-Σ-Decomposition D x) ( index-Set-Indexed-Σ-Decomposition D a)) ( unit-trunc-Prop (pair a refl))))) ( ( equiv-tot ( λ Q → ( ( ( equiv-Π-equiv-family ( λ x → inv-equiv ( equiv-equiv-iff ( Id-Prop ( indexing-set-Set-Indexed-Σ-Decomposition D) ( index-Set-Indexed-Σ-Decomposition D x) ( index-Set-Indexed-Σ-Decomposition D a)) ( subtype-inhabited-subtype Q x)) ∘e ( equiv-inv-equiv))) ∘e ( left-unit-law-Σ-is-contr ( is-torsorial-Id (index-Set-Indexed-Σ-Decomposition D a)) ( pair ( index-Set-Indexed-Σ-Decomposition D a) ( refl)))) ∘e ( equiv-right-swap-Σ)) ∘e ( equiv-tot (λ ie → pr2 ie a)))) ∘e ( associative-Σ ( inhabited-subtype l2 A) ( is-block-partition-Set-Indexed-Σ-Decomposition) ( λ B → is-in-inhabited-subtype (pr1 B) a))) ( is-torsorial-has-same-elements-inhabited-subtype ( pair ( λ x → Id-Prop ( indexing-set-Set-Indexed-Σ-Decomposition D) ( index-Set-Indexed-Σ-Decomposition D x) ( index-Set-Indexed-Σ-Decomposition D a)) ( unit-trunc-Prop (pair a refl)))) partition-Set-Indexed-Σ-Decomposition : {l1 l2 l3 : Level} {A : UU l1} → Set-Indexed-Σ-Decomposition l2 l3 A → partition l2 (l1 ⊔ l2) A pr1 (partition-Set-Indexed-Σ-Decomposition D) = subtype-partition-Set-Indexed-Σ-Decomposition D pr2 (partition-Set-Indexed-Σ-Decomposition D) = is-partition-subtype-partition-Set-Indexed-Σ-Decomposition D ``` #### The partition obtained from the set-indexed Σ-decomposition induced by a partition has the same blocks as the original partition ```text module _ {l1 l2 l3 : Level} {A : UU l1} (P : partition (l1 ⊔ l2) l3 A) where is-block-is-block-partition-set-indexed-Σ-decomposition-partition : ( Q : inhabited-subtype (l1 ⊔ l2) A) → is-block-partition ( partition-Set-Indexed-Σ-Decomposition ( set-indexed-Σ-decomposition-partition P)) ( Q) → is-block-partition P Q is-block-is-block-partition-set-indexed-Σ-decomposition-partition Q (i , H) = apply-universal-property-trunc-Prop ( is-inhabited-subtype-inhabited-subtype Q) ( subtype-partition P Q) ( λ (a , q) → {! !}) {- i : X H : (x : A) → Q x ≃ (pr1 (inv-equiv (compute-total-block-partition P) x) = i) a : A q : Q a H a q : pr1 (inv-equiv (compute-total-block-partition P) a) = i H' : (B : block) -} is-block-partition-set-indexed-Σ-decomposition-is-block-partition : ( Q : inhabited-subtype (l1 ⊔ l2) A) → is-block-partition P Q → is-block-partition ( partition-Set-Indexed-Σ-Decomposition ( set-indexed-Σ-decomposition-partition P)) ( Q) is-block-partition-set-indexed-Σ-decomposition-is-block-partition Q H = {! !} has-same-blocks-partition-set-indexed-Σ-decomposition-partition : has-same-blocks-partition ( partition-Set-Indexed-Σ-Decomposition ( set-indexed-Σ-decomposition-partition P)) ( P) pr1 (has-same-blocks-partition-set-indexed-Σ-decomposition-partition B) = is-block-is-block-partition-set-indexed-Σ-decomposition-partition B pr2 (has-same-blocks-partition-set-indexed-Σ-decomposition-partition B) = is-block-partition-set-indexed-Σ-decomposition-is-block-partition B ```