# The universal property of the image of a map ```agda module foundation.universal-property-image where ``` <details><summary>Imports</summary> ```agda open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.images open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.slice open import foundation.surjective-maps open import foundation.transport-along-identifications open import foundation.universal-property-family-of-fibers-of-maps open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.sections open import foundation-core.subtypes ``` </details> ## Idea The {{#concept "universal property of the image" Disambiguation="maps of types" Agda=is-image}} of a map `f : A → X` states that the [image](foundation.images.md) is the least [subtype](foundation-core.subtypes.md) of `X` containing all the values of `f`. ## Definition ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) where precomp-emb : {l4 : Level} {C : UU l4} (j : C ↪ X) → hom-slice (map-emb i) (map-emb j) → hom-slice f (map-emb j) pr1 (precomp-emb j r) = map-hom-slice (map-emb i) (map-emb j) r ∘ map-hom-slice f (map-emb i) q pr2 (precomp-emb j r) = ( triangle-hom-slice f (map-emb i) q) ∙h ( ( triangle-hom-slice (map-emb i) (map-emb j) r) ·r ( map-hom-slice f (map-emb i) q)) is-image : UUω is-image = {l : Level} (C : UU l) (j : C ↪ X) → is-equiv (precomp-emb j) ``` ### Simplified variant of `is-image` ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) where is-image' : UUω is-image' = {l : Level} (C : UU l) (j : C ↪ X) → hom-slice f (map-emb j) → hom-slice (map-emb i) (map-emb j) ``` ### The universal property of the image subtype ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) (B : subtype l3 X) where is-image-subtype : UUω is-image-subtype = {l : Level} (C : subtype l X) → (B ⊆ C) ↔ ((a : A) → is-in-subtype C (f a)) ``` ## Properties ### The two universal properties of the image of a map are equivalent ```agda abstract is-image-is-image' : {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} (f : A → X) → { B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) → is-image' f i q → is-image f i q is-image-is-image' f i q up' C j = is-equiv-has-converse-is-prop ( is-prop-hom-slice (map-emb i) j) ( is-prop-hom-slice f j) ( up' C j) module _ {l1 l2 l3 l4 : Level} {X : UU l1} {A : UU l2} (f : A → X) {B : UU l3} (i : B ↪ X) (q : hom-slice f (map-emb i)) (H : is-image f i q) {C : UU l4} (j : C ↪ X) (r : hom-slice f (map-emb j)) where abstract universal-property-image : is-contr ( Σ ( hom-slice (map-emb i) (map-emb j)) ( λ h → htpy-hom-slice f ( map-emb j) ( comp-hom-slice f (map-emb i) (map-emb j) h q) ( r))) universal-property-image = is-contr-equiv' ( fiber (precomp-emb f i q j) r) ( equiv-tot ( λ h → extensionality-hom-slice f (map-emb j) (precomp-emb f i q j h) r)) ( is-contr-map-is-equiv (H C j) r) hom-slice-universal-property-image : hom-slice (map-emb i) (map-emb j) hom-slice-universal-property-image = pr1 (center universal-property-image) map-hom-slice-universal-property-image : B → C map-hom-slice-universal-property-image = map-hom-slice (map-emb i) (map-emb j) hom-slice-universal-property-image triangle-hom-slice-universal-property-image : map-emb i ~ map-emb j ∘ map-hom-slice-universal-property-image triangle-hom-slice-universal-property-image = triangle-hom-slice ( map-emb i) ( map-emb j) ( hom-slice-universal-property-image) htpy-hom-slice-universal-property-image : htpy-hom-slice f ( map-emb j) ( comp-hom-slice f ( map-emb i) ( map-emb j) ( hom-slice-universal-property-image) ( q)) ( r) htpy-hom-slice-universal-property-image = pr2 (center universal-property-image) abstract htpy-map-hom-slice-universal-property-image : map-hom-slice f ( map-emb j) ( comp-hom-slice f ( map-emb i) ( map-emb j) ( hom-slice-universal-property-image) ( q)) ~ map-hom-slice f (map-emb j) r htpy-map-hom-slice-universal-property-image = pr1 htpy-hom-slice-universal-property-image tetrahedron-hom-slice-universal-property-image : ( ( ( triangle-hom-slice f (map-emb i) q) ∙h ( ( triangle-hom-slice-universal-property-image) ·r ( map-hom-slice f (map-emb i) q))) ∙h ( map-emb j ·l htpy-map-hom-slice-universal-property-image)) ~ ( triangle-hom-slice f (map-emb j) r) tetrahedron-hom-slice-universal-property-image = pr2 htpy-hom-slice-universal-property-image ``` ### The image subtype satisfies the universal property of the image subtype ```agda module _ {l1 l2 : Level} {X : UU l1} {A : UU l2} (f : A → X) where abstract forward-implication-is-image-subtype-subtype-im : {l : Level} (B : subtype l X) → subtype-im f ⊆ B → (a : A) → is-in-subtype B (f a) forward-implication-is-image-subtype-subtype-im B H a = H (f a) (unit-trunc-Prop (a , refl)) backward-implication-is-image-subtype-subtype-im : {l : Level} (B : subtype l X) → ((a : A) → is-in-subtype B (f a)) → subtype-im f ⊆ B backward-implication-is-image-subtype-subtype-im B H x K = apply-universal-property-trunc-Prop K (B x) (λ where (a , refl) → H a) is-image-subtype-subtype-im : is-image-subtype f (subtype-im f) pr1 (is-image-subtype-subtype-im B) = forward-implication-is-image-subtype-subtype-im B pr2 (is-image-subtype-subtype-im B) = backward-implication-is-image-subtype-subtype-im B ``` ### The identity embedding is the image inclusion of any map that has a section ```agda abstract is-image-has-section : (l : Level) {l1 l2 : Level} {X : UU l1} {A : UU l2} (f : A → X) → section f → is-image f id-emb (f , refl-htpy) is-image-has-section l f (g , H) = is-image-is-image' ( f) ( id-emb) ( f , refl-htpy) ( λ B m h → ((pr1 h ∘ g) , (λ x → inv (H x) ∙ pr2 h (g x)))) ``` ### Any embedding is its own image inclusion ```agda abstract is-image-is-emb : (l : Level) {l1 l2 : Level} {X : UU l1} {A : UU l2} (f : A → X) → (H : is-emb f) → is-image f (f , H) (id , refl-htpy) is-image-is-emb l f H = is-image-is-image' f (f , H) (id , refl-htpy) (λ B m h → h) ``` ### The image of `f` is the image of `f` ```agda module _ {l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3} (f : A → X) (m : B ↪ X) (h : hom-slice f (map-emb m)) where abstract fiberwise-map-is-image-im : (x : X) → type-trunc-Prop (fiber f x) → fiber (map-emb m) x fiberwise-map-is-image-im x = map-universal-property-trunc-Prop { A = fiber f x} ( fiber-emb-Prop m x) ( λ t → ( map-hom-slice f (map-emb m) h (pr1 t)) , ( ( inv (triangle-hom-slice f (map-emb m) h (pr1 t))) ∙ ( pr2 t))) map-is-image-im : im f → B map-is-image-im (x , t) = pr1 (fiberwise-map-is-image-im x t) inv-triangle-is-image-im : map-emb m ∘ map-is-image-im ~ inclusion-im f inv-triangle-is-image-im (x , t) = pr2 (fiberwise-map-is-image-im x t) triangle-is-image-im : inclusion-im f ~ map-emb m ∘ map-is-image-im triangle-is-image-im = inv-htpy inv-triangle-is-image-im abstract is-image-im : {l1 l2 : Level} {X : UU l1} {A : UU l2} (f : A → X) → is-image f (emb-im f) (unit-im f) is-image-im f = is-image-is-image' ( f) ( emb-im f) ( unit-im f) ( λ B m h → (map-is-image-im f m h , triangle-is-image-im f m h)) ``` ### A factorization of a map through an embedding is the image factorization if and only if the right factor is surjective ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3} (f : A → X) (i : B ↪ X) (q : hom-slice f (map-emb i)) where abstract is-surjective-is-image : is-image f i q → is-surjective (map-hom-slice f (map-emb i) q) is-surjective-is-image up-i b = apply-universal-property-trunc-Prop β ( trunc-Prop (fiber (map-hom-slice f (map-emb i) q) b)) ( γ) where g : type-subtype (trunc-Prop ∘ fiber (map-hom-slice f (map-emb i) q)) → X g = map-emb i ∘ pr1 is-emb-g : is-emb g is-emb-g = is-emb-comp (map-emb i) pr1 ( is-emb-map-emb i) ( is-emb-inclusion-subtype (λ x → trunc-Prop _)) α : hom-slice (map-emb i) g α = map-inv-is-equiv ( up-i ( Σ B ( λ b → type-trunc-Prop (fiber (map-hom-slice f (map-emb i) q) b))) ( g , is-emb-g)) ( map-unit-im (pr1 q) , pr2 q) β : type-trunc-Prop (fiber (map-hom-slice f (map-emb i) q) (pr1 (pr1 α b))) β = pr2 (pr1 α b) γ : fiber (map-hom-slice f (map-emb i) q) (pr1 (pr1 α b)) → type-Prop (trunc-Prop (fiber (pr1 q) b)) γ (a , p) = unit-trunc-Prop ( a , p ∙ inv (is-injective-is-emb (is-emb-map-emb i) (pr2 α b))) is-image-is-surjective' : is-surjective (map-hom-slice f (map-emb i) q) → is-image' f i q is-image-is-surjective' H B' m = map-equiv ( ( equiv-hom-slice-fiberwise-hom (map-emb i) (map-emb m)) ∘e ( inv-equiv ( equiv-universal-property-family-of-fibers ( map-emb i) ( fiber (map-emb m)))) ∘e ( inv-equiv ( equiv-dependent-universal-property-surjection-is-surjective ( pr1 q) ( H) ( λ b → ( fiber (map-emb m) (pr1 i b)) , ( is-prop-map-emb m (pr1 i b))))) ∘e ( equiv-Π-equiv-family ( λ a → equiv-tr (fiber (map-emb m)) (pr2 q a))) ∘e ( equiv-universal-property-family-of-fibers f (fiber (map-emb m))) ∘e ( equiv-fiberwise-hom-hom-slice f (map-emb m))) is-image-is-surjective : is-surjective (map-hom-slice f (map-emb i) q) → is-image f i q is-image-is-surjective H = is-image-is-image' f i q (is-image-is-surjective' H) ```