# The universal property of set quotients ```agda {-# OPTIONS --lossy-unification #-} module foundation.universal-property-set-quotients where ``` <details><summary>Imports</summary> ```agda open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.effective-maps-equivalence-relations open import foundation.epimorphisms-with-respect-to-sets open import foundation.equivalence-classes open import foundation.existential-quantification open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.images open import foundation.injective-maps open import foundation.locally-small-types open import foundation.logical-equivalences open import foundation.propositional-extensionality open import foundation.propositional-truncations open import foundation.reflecting-maps-equivalence-relations open import foundation.sets open import foundation.surjective-maps open import foundation.transport-along-identifications open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-image open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.cartesian-product-types open import foundation-core.commuting-triangles-of-maps open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.equivalence-relations open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.propositional-maps open import foundation-core.propositions open import foundation-core.small-types open import foundation-core.subtypes open import foundation-core.torsorial-type-families open import foundation-core.type-theoretic-principle-of-choice open import foundation-core.univalence ``` </details> ## Idea The universal property of set quotients characterizes maps out of set quotients. ## Definitions ### The universal property of set quotients ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) where precomp-Set-Quotient : {l : Level} (X : Set l) → (hom-Set B X) → reflecting-map-equivalence-relation R (type-Set X) pr1 (precomp-Set-Quotient X g) = g ∘ (map-reflecting-map-equivalence-relation R f) pr2 (precomp-Set-Quotient X g) r = ap g (reflects-map-reflecting-map-equivalence-relation R f r) is-set-quotient : {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) → UUω is-set-quotient R B f = {l : Level} (X : Set l) → is-equiv (precomp-Set-Quotient R B f X) module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) where universal-property-set-quotient : UUω universal-property-set-quotient = {l : Level} (X : Set l) (g : reflecting-map-equivalence-relation R (type-Set X)) → is-contr ( Σ ( hom-Set B X) ( λ h → ( h ∘ map-reflecting-map-equivalence-relation R f) ~ ( map-reflecting-map-equivalence-relation R g))) ``` ## Properties ### Precomposing the identity function by a reflecting map yields the original reflecting map ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) where precomp-id-Set-Quotient : precomp-Set-Quotient R B f B id = f precomp-id-Set-Quotient = eq-htpy-reflecting-map-equivalence-relation R B ( precomp-Set-Quotient R B f B id) ( f) ( refl-htpy) ``` ### If a reflecting map is a set quotient, then it satisfies the universal property of the set quotient ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) where universal-property-set-quotient-is-set-quotient : is-set-quotient R B f → universal-property-set-quotient R B f universal-property-set-quotient-is-set-quotient Q X g = is-contr-equiv' ( fiber (precomp-Set-Quotient R B f X) g) ( equiv-tot ( λ h → extensionality-reflecting-map-equivalence-relation R X ( precomp-Set-Quotient R B f X h) ( g))) ( is-contr-map-is-equiv (Q X) g) map-universal-property-set-quotient-is-set-quotient : {l4 : Level} (Uf : is-set-quotient R B f) (C : Set l4) (g : reflecting-map-equivalence-relation R (type-Set C)) → type-Set B → type-Set C map-universal-property-set-quotient-is-set-quotient Uf C g = pr1 (center (universal-property-set-quotient-is-set-quotient Uf C g)) triangle-universal-property-set-quotient-is-set-quotient : {l4 : Level} (Uf : is-set-quotient R B f) (C : Set l4) (g : reflecting-map-equivalence-relation R (type-Set C)) → ( ( map-universal-property-set-quotient-is-set-quotient Uf C g) ∘ ( map-reflecting-map-equivalence-relation R f)) ~ ( map-reflecting-map-equivalence-relation R g) triangle-universal-property-set-quotient-is-set-quotient Uf C g = ( pr2 (center (universal-property-set-quotient-is-set-quotient Uf C g))) ``` ### If a reflecting map satisfies the universal property of the set quotient, then it is a set quotient ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (f : reflecting-map-equivalence-relation R (type-Set B)) where is-set-quotient-universal-property-set-quotient : universal-property-set-quotient R B f → is-set-quotient R B f is-set-quotient-universal-property-set-quotient Uf X = is-equiv-is-contr-map ( λ g → is-contr-equiv ( Σ ( hom-Set B X) ( λ h → ( h ∘ map-reflecting-map-equivalence-relation R f) ~ ( map-reflecting-map-equivalence-relation R g))) ( equiv-tot ( λ h → extensionality-reflecting-map-equivalence-relation R X ( precomp-Set-Quotient R B f X h) ( g))) ( Uf X g)) ``` ### A map out of a type equipped with an equivalence relation is effective if and only if it is an image factorization ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (q : A → type-Set B) where is-effective-is-image : (i : type-Set B ↪ (A → Prop l2)) → (T : (prop-equivalence-relation R) ~ ((map-emb i) ∘ q)) → is-image (prop-equivalence-relation R) i (pair q T) → is-effective R q is-effective-is-image i T H x y = ( is-effective-class R x y) ∘e ( ( inv-equiv (equiv-ap-emb (emb-equivalence-class R))) ∘e ( ( inv-equiv (convert-eq-values T x y)) ∘e ( equiv-ap-emb i))) is-surjective-and-effective-is-image : (i : type-Set B ↪ (A → Prop l2)) → (T : (prop-equivalence-relation R) ~ ((map-emb i) ∘ q)) → is-image (prop-equivalence-relation R) i (pair q T) → is-surjective-and-effective R q pr1 (is-surjective-and-effective-is-image i T H) = is-surjective-is-image (prop-equivalence-relation R) i (pair q T) H pr2 (is-surjective-and-effective-is-image i T H) = is-effective-is-image i T H is-locally-small-is-surjective-and-effective : is-surjective-and-effective R q → is-locally-small l2 (type-Set B) is-locally-small-is-surjective-and-effective e x y = apply-universal-property-trunc-Prop ( pr1 e x) ( is-small-Prop l2 (x = y)) ( λ u → apply-universal-property-trunc-Prop ( pr1 e y) ( is-small-Prop l2 (x = y)) ( α u)) where α : fiber q x → fiber q y → is-small l2 (x = y) pr1 (α (pair a refl) (pair b refl)) = sim-equivalence-relation R a b pr2 (α (pair a refl) (pair b refl)) = pr2 e a b large-map-emb-is-surjective-and-effective : is-surjective-and-effective R q → type-Set B → A → Prop l3 large-map-emb-is-surjective-and-effective H b a = Id-Prop B b (q a) small-map-emb-is-surjective-and-effective : is-surjective-and-effective R q → type-Set B → A → Σ (Prop l3) (λ P → is-small l2 (type-Prop P)) pr1 (small-map-emb-is-surjective-and-effective H b a) = large-map-emb-is-surjective-and-effective H b a pr2 (small-map-emb-is-surjective-and-effective H b a) = is-locally-small-is-surjective-and-effective H b (q a) map-emb-is-surjective-and-effective : is-surjective-and-effective R q → type-Set B → A → Prop l2 pr1 (map-emb-is-surjective-and-effective H b a) = pr1 (pr2 (small-map-emb-is-surjective-and-effective H b a)) pr2 (map-emb-is-surjective-and-effective H b a) = is-prop-equiv' ( pr2 (pr2 (small-map-emb-is-surjective-and-effective H b a))) ( is-prop-type-Prop ( large-map-emb-is-surjective-and-effective H b a)) compute-map-emb-is-surjective-and-effective : (H : is-surjective-and-effective R q) (b : type-Set B) (a : A) → type-Prop (large-map-emb-is-surjective-and-effective H b a) ≃ type-Prop (map-emb-is-surjective-and-effective H b a) compute-map-emb-is-surjective-and-effective H b a = pr2 (pr2 (small-map-emb-is-surjective-and-effective H b a)) triangle-emb-is-surjective-and-effective : (H : is-surjective-and-effective R q) → prop-equivalence-relation R ~ (map-emb-is-surjective-and-effective H ∘ q) triangle-emb-is-surjective-and-effective H a = eq-htpy ( λ x → eq-equiv-Prop ( ( compute-map-emb-is-surjective-and-effective H (q a) x) ∘e ( inv-equiv (pr2 H a x)))) is-emb-map-emb-is-surjective-and-effective : (H : is-surjective-and-effective R q) → is-emb (map-emb-is-surjective-and-effective H) is-emb-map-emb-is-surjective-and-effective H = is-emb-is-injective ( is-set-function-type is-set-type-Prop) ( λ {x} {y} p → apply-universal-property-trunc-Prop ( pr1 H y) ( Id-Prop B x y) ( α p)) where α : {x y : type-Set B} (p : ( map-emb-is-surjective-and-effective H x) = ( map-emb-is-surjective-and-effective H y)) → fiber q y → type-Prop (Id-Prop B x y) α {x} p (pair a refl) = map-inv-equiv ( ( inv-equiv ( pr2 ( is-locally-small-is-surjective-and-effective H (q a) (q a)))) ∘e ( ( equiv-eq (ap pr1 (htpy-eq p a))) ∘e ( pr2 ( is-locally-small-is-surjective-and-effective H x (q a))))) ( refl) emb-is-surjective-and-effective : (H : is-surjective-and-effective R q) → type-Set B ↪ (A → Prop l2) pr1 (emb-is-surjective-and-effective H) = map-emb-is-surjective-and-effective H pr2 (emb-is-surjective-and-effective H) = is-emb-map-emb-is-surjective-and-effective H is-emb-large-map-emb-is-surjective-and-effective : (e : is-surjective-and-effective R q) → is-emb (large-map-emb-is-surjective-and-effective e) is-emb-large-map-emb-is-surjective-and-effective e = is-emb-is-injective ( is-set-function-type is-set-type-Prop) ( λ {x} {y} p → apply-universal-property-trunc-Prop ( pr1 e y) ( Id-Prop B x y) ( α p)) where α : {x y : type-Set B} (p : ( large-map-emb-is-surjective-and-effective e x) = ( large-map-emb-is-surjective-and-effective e y)) → fiber q y → type-Prop (Id-Prop B x y) α p (pair a refl) = map-inv-equiv (equiv-eq (ap pr1 (htpy-eq p a))) refl large-emb-is-surjective-and-effective : is-surjective-and-effective R q → type-Set B ↪ (A → Prop l3) pr1 (large-emb-is-surjective-and-effective e) = large-map-emb-is-surjective-and-effective e pr2 (large-emb-is-surjective-and-effective e) = is-emb-large-map-emb-is-surjective-and-effective e is-image-is-surjective-and-effective : ( H : is-surjective-and-effective R q) → is-image ( prop-equivalence-relation R) ( emb-is-surjective-and-effective H) ( pair q (triangle-emb-is-surjective-and-effective H)) is-image-is-surjective-and-effective H = is-image-is-surjective ( prop-equivalence-relation R) ( emb-is-surjective-and-effective H) ( pair q (triangle-emb-is-surjective-and-effective H)) ( pr1 H) ``` ### Any set quotient `q : A → B` of an equivalence relation `R` on `A` is surjective ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) where is-surjective-is-set-quotient : (q : reflecting-map-equivalence-relation R (type-Set B)) → is-set-quotient R B q → is-surjective (map-reflecting-map-equivalence-relation R q) is-surjective-is-set-quotient q Q b = tr ( λ y → type-trunc-Prop (fiber (map-reflecting-map-equivalence-relation R q) y)) ( htpy-eq ( ap pr1 ( eq-is-contr ( universal-property-set-quotient-is-set-quotient R B q Q B q) { inclusion-im (map-reflecting-map-equivalence-relation R q) ∘ β , δ} { id , refl-htpy})) ( b)) ( pr2 (β b)) where α : reflects-equivalence-relation R ( map-unit-im (map-reflecting-map-equivalence-relation R q)) α {x} {y} r = is-injective-is-emb ( is-emb-inclusion-im (map-reflecting-map-equivalence-relation R q)) ( map-equiv ( convert-eq-values ( triangle-unit-im (map-reflecting-map-equivalence-relation R q)) ( x) ( y)) ( reflects-map-reflecting-map-equivalence-relation R q r)) β : type-Set B → im (map-reflecting-map-equivalence-relation R q) β = map-inv-is-equiv ( Q ( pair ( im (map-reflecting-map-equivalence-relation R q)) ( is-set-im ( map-reflecting-map-equivalence-relation R q) ( is-set-type-Set B)))) ( pair (map-unit-im (map-reflecting-map-equivalence-relation R q)) α) γ : ( β ∘ (map-reflecting-map-equivalence-relation R q)) ~ ( map-unit-im (map-reflecting-map-equivalence-relation R q)) γ = htpy-eq ( ap ( pr1) ( is-section-map-inv-is-equiv ( Q ( pair ( im (map-reflecting-map-equivalence-relation R q)) ( is-set-im ( map-reflecting-map-equivalence-relation R q) ( is-set-type-Set B)))) ( map-unit-im (map-reflecting-map-equivalence-relation R q) , α))) δ : ( ( inclusion-im (map-reflecting-map-equivalence-relation R q) ∘ β) ∘ ( map-reflecting-map-equivalence-relation R q)) ~ ( map-reflecting-map-equivalence-relation R q) δ = ( inclusion-im (map-reflecting-map-equivalence-relation R q) ·l γ) ∙h ( triangle-unit-im (map-reflecting-map-equivalence-relation R q)) ``` ### Any set quotient `q : A → B` of an equivalence relation `R` on `A` is effective ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) where is-effective-is-set-quotient : (q : reflecting-map-equivalence-relation R (type-Set B)) → is-set-quotient R B q → is-effective R (map-reflecting-map-equivalence-relation R q) is-effective-is-set-quotient q Q x y = inv-equiv (compute-P y) ∘e δ (map-reflecting-map-equivalence-relation R q y) where α : Σ (A → Prop l2) (reflects-equivalence-relation R) α = pair ( prop-equivalence-relation R x) ( λ r → eq-iff ( transitive-equivalence-relation R _ _ _ r) ( transitive-equivalence-relation R _ _ _ ( symmetric-equivalence-relation R _ _ r))) P : type-Set B → Prop l2 P = map-inv-is-equiv (Q (Prop-Set l2)) α compute-P : (a : A) → sim-equivalence-relation R x a ≃ type-Prop (P (map-reflecting-map-equivalence-relation R q a)) compute-P a = equiv-eq ( ap pr1 ( htpy-eq ( ap pr1 ( inv (is-section-map-inv-is-equiv (Q (Prop-Set l2)) α))) ( a))) point-P : type-Prop (P (map-reflecting-map-equivalence-relation R q x)) point-P = map-equiv (compute-P x) (refl-equivalence-relation R x) center-total-P : Σ (type-Set B) (λ b → type-Prop (P b)) center-total-P = pair (map-reflecting-map-equivalence-relation R q x) point-P contraction-total-P : (u : Σ (type-Set B) (λ b → type-Prop (P b))) → center-total-P = u contraction-total-P (pair b p) = eq-type-subtype P ( apply-universal-property-trunc-Prop ( is-surjective-is-set-quotient R B q Q b) ( Id-Prop B (map-reflecting-map-equivalence-relation R q x) b) ( λ v → ( reflects-map-reflecting-map-equivalence-relation R q ( map-inv-equiv ( compute-P (pr1 v)) ( inv-tr (type-Prop ∘ P) (pr2 v) p))) ∙ ( pr2 v))) is-torsorial-P : is-torsorial (λ b → type-Prop (P b)) is-torsorial-P = pair center-total-P contraction-total-P β : (b : type-Set B) → map-reflecting-map-equivalence-relation R q x = b → type-Prop (P b) β .(map-reflecting-map-equivalence-relation R q x) refl = point-P γ : (b : type-Set B) → is-equiv (β b) γ = fundamental-theorem-id is-torsorial-P β δ : (b : type-Set B) → (map-reflecting-map-equivalence-relation R q x = b) ≃ type-Prop (P b) δ b = pair (β b) (γ b) apply-effectiveness-is-set-quotient : (q : reflecting-map-equivalence-relation R (type-Set B)) → is-set-quotient R B q → {x y : A} → ( map-reflecting-map-equivalence-relation R q x = map-reflecting-map-equivalence-relation R q y) → sim-equivalence-relation R x y apply-effectiveness-is-set-quotient q H {x} {y} = map-equiv (is-effective-is-set-quotient q H x y) apply-effectiveness-is-set-quotient' : (q : reflecting-map-equivalence-relation R (type-Set B)) → is-set-quotient R B q → {x y : A} → sim-equivalence-relation R x y → map-reflecting-map-equivalence-relation R q x = map-reflecting-map-equivalence-relation R q y apply-effectiveness-is-set-quotient' q H {x} {y} = map-inv-equiv (is-effective-is-set-quotient q H x y) is-surjective-and-effective-is-set-quotient : (q : reflecting-map-equivalence-relation R (type-Set B)) → is-set-quotient R B q → is-surjective-and-effective R (map-reflecting-map-equivalence-relation R q) pr1 (is-surjective-and-effective-is-set-quotient q Q) = is-surjective-is-set-quotient R B q Q pr2 (is-surjective-and-effective-is-set-quotient q Q) = is-effective-is-set-quotient q Q ``` ### Any surjective and effective map is a set quotient ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (B : Set l3) (q : reflecting-map-equivalence-relation R (type-Set B)) where private module _ ( E : is-surjective-and-effective R ( map-reflecting-map-equivalence-relation R q)) { l : Level} ( X : Set l) ( f : reflecting-map-equivalence-relation R (type-Set X)) where P-Prop : (b : type-Set B) (x : type-Set X) → Prop (l1 ⊔ l3 ⊔ l) P-Prop b x = exists-structure-Prop A ( λ a → ( map-reflecting-map-equivalence-relation R f a = x) × ( map-reflecting-map-equivalence-relation R q a = b)) P : (b : type-Set B) (x : type-Set X) → UU (l1 ⊔ l3 ⊔ l) P b x = type-Prop (P-Prop b x) all-elements-equal-total-P : (b : type-Set B) → all-elements-equal (Σ (type-Set X) (P b)) all-elements-equal-total-P b x y = eq-type-subtype ( P-Prop b) ( apply-universal-property-trunc-Prop ( pr2 x) ( Id-Prop X (pr1 x) (pr1 y)) ( λ u → apply-universal-property-trunc-Prop ( pr2 y) ( Id-Prop X (pr1 x) (pr1 y)) ( λ v → ( inv (pr1 (pr2 u))) ∙ ( ( pr2 f ( map-equiv ( pr2 E (pr1 u) (pr1 v)) ( (pr2 (pr2 u)) ∙ (inv (pr2 (pr2 v)))))) ∙ ( pr1 (pr2 v)))))) is-prop-total-P : (b : type-Set B) → is-prop (Σ (type-Set X) (P b)) is-prop-total-P b = is-prop-all-elements-equal (all-elements-equal-total-P b) α : (b : type-Set B) → Σ (type-Set X) (P b) α = map-inv-is-equiv ( dependent-universal-property-surjection-is-surjective ( map-reflecting-map-equivalence-relation R q) ( pr1 E) ( λ b → pair ( Σ (type-Set X) (P b)) ( is-prop-total-P b))) ( λ a → pair (pr1 f a) (unit-trunc-Prop (pair a (pair refl refl)))) β : (a : A) → ( α (map-reflecting-map-equivalence-relation R q a)) = ( pair (pr1 f a) (unit-trunc-Prop (pair a (pair refl refl)))) β = htpy-eq ( is-section-map-inv-is-equiv ( dependent-universal-property-surjection-is-surjective ( map-reflecting-map-equivalence-relation R q) ( pr1 E) ( λ b → pair (Σ (type-Set X) (P b)) (is-prop-total-P b))) ( λ a → pair (pr1 f a) (unit-trunc-Prop (pair a (pair refl refl))))) is-set-quotient-is-surjective-and-effective : ( E : is-surjective-and-effective R ( map-reflecting-map-equivalence-relation R q)) → is-set-quotient R B q is-set-quotient-is-surjective-and-effective E X = is-equiv-is-contr-map ( λ f → is-proof-irrelevant-is-prop ( is-prop-equiv ( equiv-tot ( λ _ → equiv-ap-inclusion-subtype ( reflects-prop-equivalence-relation R X))) ( is-prop-map-is-emb ( is-epimorphism-is-surjective-Set (pr1 E) X) ( pr1 f))) ( pair ( λ b → pr1 (α E X f b)) ( eq-type-subtype ( reflects-prop-equivalence-relation R X) ( eq-htpy (λ a → ap pr1 (β E X f a)))))) universal-property-set-quotient-is-surjective-and-effective : ( E : is-surjective-and-effective R ( map-reflecting-map-equivalence-relation R q)) → universal-property-set-quotient R B q universal-property-set-quotient-is-surjective-and-effective E = universal-property-set-quotient-is-set-quotient R B q ( is-set-quotient-is-surjective-and-effective E) ``` ### The large set quotient satisfies the universal property of set quotients ```agda module _ {l1 l2 : Level} {A : UU l1} (R : equivalence-relation l2 A) where universal-property-equivalence-class : universal-property-set-quotient R ( equivalence-class-Set R) ( quotient-reflecting-map-equivalence-class R) universal-property-equivalence-class = universal-property-set-quotient-is-surjective-and-effective R ( equivalence-class-Set R) ( quotient-reflecting-map-equivalence-class R) ( is-surjective-and-effective-class R) is-set-quotient-equivalence-class : is-set-quotient R ( equivalence-class-Set R) ( quotient-reflecting-map-equivalence-class R) is-set-quotient-equivalence-class = is-set-quotient-universal-property-set-quotient R ( equivalence-class-Set R) ( quotient-reflecting-map-equivalence-class R) ( universal-property-equivalence-class) map-universal-property-equivalence-class : {l4 : Level} (C : Set l4) (g : reflecting-map-equivalence-relation R (type-Set C)) → equivalence-class R → type-Set C map-universal-property-equivalence-class C g = pr1 (center (universal-property-equivalence-class C g)) triangle-universal-property-equivalence-class : {l4 : Level} (C : Set l4) (g : reflecting-map-equivalence-relation R (type-Set C)) → ( ( map-universal-property-equivalence-class C g) ∘ ( class R)) ~ ( map-reflecting-map-equivalence-relation R g) triangle-universal-property-equivalence-class C g = pr2 (center (universal-property-equivalence-class C g)) ``` ### The induction property of set quotients ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (Q : Set l3) (q : reflecting-map-equivalence-relation R (type-Set Q)) (U : is-set-quotient R Q q) where ind-is-set-quotient : {l : Level} (P : type-Set Q → Prop l) → ((a : A) → type-Prop (P (map-reflecting-map-equivalence-relation R q a))) → ((x : type-Set Q) → type-Prop (P x)) ind-is-set-quotient = apply-dependent-universal-property-surjection-is-surjective ( map-reflecting-map-equivalence-relation R q) ( is-surjective-is-set-quotient R Q q U) ``` ### Injectiveness of maps defined by the universal property of the set quotient ```agda module _ {l1 l2 l3 : Level} {A : UU l1} (R : equivalence-relation l2 A) (Q : Set l3) (q : reflecting-map-equivalence-relation R (type-Set Q)) (U : is-set-quotient R Q q) where is-injective-map-universal-property-set-quotient-is-set-quotient : {l4 : Level} (B : Set l4) (f : reflecting-map-equivalence-relation R (type-Set B)) ( H : (x y : A) → ( map-reflecting-map-equivalence-relation R f x = map-reflecting-map-equivalence-relation R f y) → sim-equivalence-relation R x y) → is-injective ( map-universal-property-set-quotient-is-set-quotient R Q q U B f) is-injective-map-universal-property-set-quotient-is-set-quotient B f H {x} {y} = ind-is-set-quotient R Q q U ( λ u → function-Prop ( map-universal-property-set-quotient-is-set-quotient R Q q U B f u = map-universal-property-set-quotient-is-set-quotient R Q q U B f y) ( Id-Prop Q u y)) ( λ a → ( ind-is-set-quotient R Q q U ( λ v → function-Prop ( ( map-reflecting-map-equivalence-relation R f a) = ( map-universal-property-set-quotient-is-set-quotient R Q q U B f v)) ( Id-Prop Q (map-reflecting-map-equivalence-relation R q a) v)) ( λ b p → reflects-map-reflecting-map-equivalence-relation R q ( H a b ( ( p) ∙ ( triangle-universal-property-set-quotient-is-set-quotient R Q q U B f b)))) ( y)) ∘ ( concat ( inv ( triangle-universal-property-set-quotient-is-set-quotient R Q q U B f a)) ( map-universal-property-set-quotient-is-set-quotient R Q q U B f y))) ( x) is-emb-map-universal-property-set-quotient-is-set-quotient : {l4 : Level} (B : Set l4) (f : reflecting-map-equivalence-relation R (type-Set B)) ( H : (x y : A) → ( map-reflecting-map-equivalence-relation R f x = map-reflecting-map-equivalence-relation R f y) → sim-equivalence-relation R x y) → is-emb ( map-universal-property-set-quotient-is-set-quotient R Q q U B f) is-emb-map-universal-property-set-quotient-is-set-quotient B f H = is-emb-is-injective ( is-set-type-Set B) ( is-injective-map-universal-property-set-quotient-is-set-quotient B f H) ``` ### The type of extensions of maps into a set along a surjection is equivalent to the proposition that that map equalizes the values that the surjection equalizes Consider a surjective map `f : A ↠ B` and a map `g : A → C` into a set `C`. Recall from [Epimorphisms with respect to sets](foundation.epimorphisms-with-respect-to-sets.md) that the type ```text Σ (B → C) (λ h → g ~ h ∘ f) ``` of extensions of `g` along `f` is a proposition. This proposition is equivalent to the proposition ```text (a a' : A) → f a = f a' → g a = g a'. ``` **Proof:** The tricky direction is to construct an extension of `g` along `f` whenever the above proposition holds. Note that we may compose `f` with the [set truncation](foundation.set-truncations.md) of `B`, this results in a map ```agda module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A ↠ B) (C : Set l3) (g : A → type-Set C) where equalizes-equal-values-prop-surjection-Set : Prop (l1 ⊔ l2 ⊔ l3) equalizes-equal-values-prop-surjection-Set = Π-Prop A ( λ a → Π-Prop A ( λ a' → function-Prop ( map-surjection f a = map-surjection f a') ( Id-Prop C (g a) (g a')))) equalizes-equal-values-surjection-Set : UU (l1 ⊔ l2 ⊔ l3) equalizes-equal-values-surjection-Set = type-Prop equalizes-equal-values-prop-surjection-Set is-prop-equalizes-equal-values-surjection-Set : is-prop equalizes-equal-values-surjection-Set is-prop-equalizes-equal-values-surjection-Set = is-prop-type-Prop equalizes-equal-values-prop-surjection-Set equalizes-equal-values-extension-along-surjection-Set : extension-along-surjection-Set f C g → equalizes-equal-values-surjection-Set equalizes-equal-values-extension-along-surjection-Set (h , q) a a' p = q a ∙ (ap h p ∙ inv (q a')) extension-equalizes-equal-values-surjection-Set : equalizes-equal-values-surjection-Set → extension-along-surjection-Set f C g extension-equalizes-equal-values-surjection-Set H = map-equiv ( e) ( apply-dependent-universal-property-surjection ( f) ( λ b → P b , is-prop-P b) ( λ a → (g a , λ (a' , p') → H a' a p'))) where P : B → UU (l1 ⊔ l2 ⊔ l3) P b = Σ (type-Set C) (λ c → (s : fiber (map-surjection f) b) → g (pr1 s) = c) e : ((b : B) → P b) ≃ Σ (B → type-Set C) (λ h → g ~ (h ∘ map-surjection f)) e = ( equiv-tot ( λ h → equiv-precomp-Π (inv-equiv-total-fiber (map-surjection f)) _)) ∘e ( equiv-tot (λ h → inv-equiv equiv-ev-pair)) ∘e ( distributive-Π-Σ) is-prop-P : (b : B) → is-prop (P b) is-prop-P b = is-prop-all-elements-equal ( λ (pair c q) (pair c' q') → eq-type-subtype ( λ c'' → Π-Prop (fiber (map-surjection f) b) (λ s → Id-Prop C (g (pr1 s)) c'')) ( map-universal-property-trunc-Prop ( Id-Prop C c c') ( λ s → inv (q s) ∙ q' s) ( is-surjective-map-surjection f b))) equiv-equalizes-equal-values-extension-along-surjection-Set : extension-along-surjection-Set f C g ≃ equalizes-equal-values-surjection-Set pr1 equiv-equalizes-equal-values-extension-along-surjection-Set = equalizes-equal-values-extension-along-surjection-Set pr2 equiv-equalizes-equal-values-extension-along-surjection-Set = is-equiv-has-converse-is-prop ( is-prop-extension-along-surjection-Set f C g) ( is-prop-equalizes-equal-values-surjection-Set) ( extension-equalizes-equal-values-surjection-Set) function-extension-equalizes-equal-values-surjection-Set : equalizes-equal-values-surjection-Set → B → type-Set C function-extension-equalizes-equal-values-surjection-Set = pr1 ∘ map-inv-equiv equiv-equalizes-equal-values-extension-along-surjection-Set coherence-triangle-extension-equalizes-equal-values-surjection-Set : (H : equalizes-equal-values-surjection-Set) → coherence-triangle-maps ( g) ( function-extension-equalizes-equal-values-surjection-Set H) ( map-surjection f) coherence-triangle-extension-equalizes-equal-values-surjection-Set = pr2 ∘ map-inv-equiv equiv-equalizes-equal-values-extension-along-surjection-Set ```